Training Energy-Based Normalizing Flow with Score-Matching Objectives
- URL: http://arxiv.org/abs/2305.15267v2
- Date: Sat, 28 Oct 2023 10:50:12 GMT
- Title: Training Energy-Based Normalizing Flow with Score-Matching Objectives
- Authors: Chen-Hao Chao, Wei-Fang Sun, Yen-Chang Hsu, Zsolt Kira, Chun-Yi Lee
- Abstract summary: We present a new flow-based modeling approach called energy-based normalizing flow (EBFlow)
We demonstrate that by optimizing EBFlow with score-matching objectives, the computation of Jacobian determinants for linear transformations can be entirely bypassed.
- Score: 36.0810550035231
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we establish a connection between the parameterization of
flow-based and energy-based generative models, and present a new flow-based
modeling approach called energy-based normalizing flow (EBFlow). We demonstrate
that by optimizing EBFlow with score-matching objectives, the computation of
Jacobian determinants for linear transformations can be entirely bypassed. This
feature enables the use of arbitrary linear layers in the construction of
flow-based models without increasing the computational time complexity of each
training iteration from $O(D^2L)$ to $O(D^3L)$ for an $L$-layered model that
accepts $D$-dimensional inputs. This makes the training of EBFlow more
efficient than the commonly-adopted maximum likelihood training method. In
addition to the reduction in runtime, we enhance the training stability and
empirical performance of EBFlow through a number of techniques developed based
on our analysis of the score-matching methods. The experimental results
demonstrate that our approach achieves a significant speedup compared to
maximum likelihood estimation while outperforming prior methods with a
noticeable margin in terms of negative log-likelihood (NLL).
Related papers
- Free-form Flows: Make Any Architecture a Normalizing Flow [8.163244519983298]
We develop a training procedure that uses an efficient estimator for the gradient of the change of variables formula.
This enables any dimension-preserving neural network to serve as a generative model through maximum likelihood training.
We achieve excellent results in molecule generation benchmarks utilizing $E(n)$-equivariant networks.
arXiv Detail & Related papers (2023-10-25T13:23:08Z) - Normalizing flow neural networks by JKO scheme [22.320632565424745]
We develop a neural ODE flow network called JKO-iFlow, inspired by the Jordan-Kinderleherer-Otto scheme.
The proposed method stacks residual blocks one after another, allowing efficient block-wise training of the residual blocks.
Experiments with synthetic and real data show that the proposed JKO-iFlow network achieves competitive performance.
arXiv Detail & Related papers (2022-12-29T18:55:00Z) - Deep Equilibrium Optical Flow Estimation [80.80992684796566]
Recent state-of-the-art (SOTA) optical flow models use finite-step recurrent update operations to emulate traditional algorithms.
These RNNs impose large computation and memory overheads, and are not directly trained to model such stable estimation.
We propose deep equilibrium (DEQ) flow estimators, an approach that directly solves for the flow as the infinite-level fixed point of an implicit layer.
arXiv Detail & Related papers (2022-04-18T17:53:44Z) - Online Convolutional Re-parameterization [51.97831675242173]
We present online convolutional re- parameterization (OREPA), a two-stage pipeline, aiming to reduce the huge training overhead by squeezing the complex training-time block into a single convolution.
Compared with the state-of-the-art re-param models, OREPA is able to save the training-time memory cost by about 70% and accelerate the training speed by around 2x.
We also conduct experiments on object detection and semantic segmentation and show consistent improvements on the downstream tasks.
arXiv Detail & Related papers (2022-04-02T09:50:19Z) - GMFlow: Learning Optical Flow via Global Matching [124.57850500778277]
We propose a GMFlow framework for learning optical flow estimation.
It consists of three main components: a customized Transformer for feature enhancement, a correlation and softmax layer for global feature matching, and a self-attention layer for flow propagation.
Our new framework outperforms 32-iteration RAFT's performance on the challenging Sintel benchmark.
arXiv Detail & Related papers (2021-11-26T18:59:56Z) - Towards extraction of orthogonal and parsimonious non-linear modes from
turbulent flows [0.0]
We propose a deep probabilistic-neural-network architecture for learning a minimal and near-orthogonal set of non-linear modes.
Our approach is based on $beta$-variational autoencoders ($beta$-VAEs) and convolutional neural networks (CNNs)
arXiv Detail & Related papers (2021-09-03T13:38:51Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Self Normalizing Flows [65.73510214694987]
We propose a flexible framework for training normalizing flows by replacing expensive terms in the gradient by learned approximate inverses at each layer.
This reduces the computational complexity of each layer's exact update from $mathcalO(D3)$ to $mathcalO(D2)$.
We show experimentally that such models are remarkably stable and optimize to similar data likelihood values as their exact gradient counterparts.
arXiv Detail & Related papers (2020-11-14T09:51:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.