Towards Fine-Grained Localization of Privacy Behaviors
- URL: http://arxiv.org/abs/2305.15314v1
- Date: Wed, 24 May 2023 16:32:14 GMT
- Title: Towards Fine-Grained Localization of Privacy Behaviors
- Authors: Vijayanta Jain, Sepideh Ghanavati, Sai Teja Peddinti, Collin McMillan
- Abstract summary: PriGen uses static analysis to identify Android applications' code segments that process sensitive information.
We present the initial evaluation of our translation task for 300,000 code segments.
- Score: 5.74186288696419
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mobile applications are required to give privacy notices to users when they
collect or share personal information. Creating consistent and concise privacy
notices can be a challenging task for developers. Previous work has attempted
to help developers create privacy notices through a questionnaire or predefined
templates. In this paper, we propose a novel approach and a framework, called
PriGen, that extends these prior work. PriGen uses static analysis to identify
Android applications' code segments that process sensitive information (i.e.
permission-requiring code segments) and then leverages a Neural Machine
Translation model to translate them into privacy captions. We present the
initial evaluation of our translation task for ~300,000 code segments.
Related papers
- A Large-Scale Privacy Assessment of Android Third-Party SDKs [17.245330733308375]
Third-party Software Development Kits (SDKs) are widely adopted in Android app development.
This convenience raises substantial concerns about unauthorized access to users' privacy-sensitive information.
Our study offers a targeted analysis of user privacy protection among Android third-party SDKs.
arXiv Detail & Related papers (2024-09-16T15:44:43Z) - PrivacyLens: Evaluating Privacy Norm Awareness of Language Models in Action [54.11479432110771]
PrivacyLens is a novel framework designed to extend privacy-sensitive seeds into expressive vignettes and further into agent trajectories.
We instantiate PrivacyLens with a collection of privacy norms grounded in privacy literature and crowdsourced seeds.
State-of-the-art LMs, like GPT-4 and Llama-3-70B, leak sensitive information in 25.68% and 38.69% of cases, even when prompted with privacy-enhancing instructions.
arXiv Detail & Related papers (2024-08-29T17:58:38Z) - {A New Hope}: Contextual Privacy Policies for Mobile Applications and An
Approach Toward Automated Generation [19.578130824867596]
The aim of contextual privacy policies ( CPPs) is to fragment privacy policies into concise snippets, displaying them only within the corresponding contexts within the application's graphical user interfaces (GUIs)
In this paper, we first formulate CPP in mobile application scenario, and then present a novel multimodal framework, named SeePrivacy, specifically designed to automatically generate CPPs for mobile applications.
A human evaluation shows that 77% of the extracted privacy policy segments were perceived as well-aligned with the detected contexts.
arXiv Detail & Related papers (2024-02-22T13:32:33Z) - DP-OPT: Make Large Language Model Your Privacy-Preserving Prompt Engineer [57.04801796205638]
Large Language Models (LLMs) have emerged as dominant tools for various tasks.
However, concerns surrounding data privacy present obstacles due to the tuned prompts' dependency on sensitive private information.
We present Differentially-Private Offsite Prompt Tuning (DP-OPT) to address this challenge.
arXiv Detail & Related papers (2023-11-27T02:01:10Z) - Can LLMs Keep a Secret? Testing Privacy Implications of Language Models via Contextual Integrity Theory [82.7042006247124]
We show that even the most capable AI models reveal private information in contexts that humans would not, 39% and 57% of the time, respectively.
Our work underscores the immediate need to explore novel inference-time privacy-preserving approaches, based on reasoning and theory of mind.
arXiv Detail & Related papers (2023-10-27T04:15:30Z) - PriGen: Towards Automated Translation of Android Applications' Code to
Privacy Captions [4.2534846356464815]
PriGen uses static analysis to identify Android applications' code segments which process sensitive information.
We present the initial evaluation of our translation task for $sim$300,000 code segments.
arXiv Detail & Related papers (2023-05-11T01:14:28Z) - PLUE: Language Understanding Evaluation Benchmark for Privacy Policies
in English [77.79102359580702]
We introduce the Privacy Policy Language Understanding Evaluation benchmark, a multi-task benchmark for evaluating the privacy policy language understanding.
We also collect a large corpus of privacy policies to enable privacy policy domain-specific language model pre-training.
We demonstrate that domain-specific continual pre-training offers performance improvements across all tasks.
arXiv Detail & Related papers (2022-12-20T05:58:32Z) - Mining User Privacy Concern Topics from App Reviews [10.776958968245589]
An increasing number of users are voicing their privacy concerns through app reviews on App stores.
The main challenge of effectively mining privacy concerns from user reviews lies in the fact that reviews expressing privacy concerns are overridden by a large number of reviews expressing more generic themes and noisy content.
In this work, we propose a novel automated approach to overcome that challenge.
arXiv Detail & Related papers (2022-12-19T08:07:27Z) - SPAct: Self-supervised Privacy Preservation for Action Recognition [73.79886509500409]
Existing approaches for mitigating privacy leakage in action recognition require privacy labels along with the action labels from the video dataset.
Recent developments of self-supervised learning (SSL) have unleashed the untapped potential of the unlabeled data.
We present a novel training framework which removes privacy information from input video in a self-supervised manner without requiring privacy labels.
arXiv Detail & Related papers (2022-03-29T02:56:40Z) - PGLP: Customizable and Rigorous Location Privacy through Policy Graph [68.3736286350014]
We propose a new location privacy notion called PGLP, which provides a rich interface to release private locations with customizable and rigorous privacy guarantee.
Specifically, we formalize a user's location privacy requirements using a textitlocation policy graph, which is expressive and customizable.
Third, we design a private location trace release framework that pipelines the detection of location exposure, policy graph repair, and private trajectory release with customizable and rigorous location privacy.
arXiv Detail & Related papers (2020-05-04T04:25:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.