Learning Answer Generation using Supervision from Automatic Question
Answering Evaluators
- URL: http://arxiv.org/abs/2305.15344v1
- Date: Wed, 24 May 2023 16:57:04 GMT
- Title: Learning Answer Generation using Supervision from Automatic Question
Answering Evaluators
- Authors: Matteo Gabburo, Siddhant Garg, Rik Koncel-Kedziorski, Alessandro
Moschitti
- Abstract summary: We propose a novel training paradigm for GenQA using supervision from automatic QA evaluation models (GAVA)
We evaluate our proposed methods on two academic and one industrial dataset, obtaining a significant improvement in answering accuracy over the previous state of the art.
- Score: 98.9267570170737
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent studies show that sentence-level extractive QA, i.e., based on Answer
Sentence Selection (AS2), is outperformed by Generation-based QA (GenQA)
models, which generate answers using the top-k answer sentences ranked by AS2
models (a la retrieval-augmented generation style). In this paper, we propose a
novel training paradigm for GenQA using supervision from automatic QA
evaluation models (GAVA). Specifically, we propose three strategies to transfer
knowledge from these QA evaluation models to a GenQA model: (i) augmenting
training data with answers generated by the GenQA model and labelled by GAVA
(either statically, before training, or (ii) dynamically, at every training
epoch); and (iii) using the GAVA score for weighting the generator loss during
the learning of the GenQA model. We evaluate our proposed methods on two
academic and one industrial dataset, obtaining a significant improvement in
answering accuracy over the previous state of the art.
Related papers
- QASnowball: An Iterative Bootstrapping Framework for High-Quality
Question-Answering Data Generation [67.27999343730224]
We introduce an iterative bootstrapping framework for QA data augmentation (named QASnowball)
QASnowball can iteratively generate large-scale high-quality QA data based on a seed set of supervised examples.
We conduct experiments in the high-resource English scenario and the medium-resource Chinese scenario, and the experimental results show that the data generated by QASnowball can facilitate QA models.
arXiv Detail & Related papers (2023-09-19T05:20:36Z) - An Empirical Comparison of LM-based Question and Answer Generation
Methods [79.31199020420827]
Question and answer generation (QAG) consists of generating a set of question-answer pairs given a context.
In this paper, we establish baselines with three different QAG methodologies that leverage sequence-to-sequence language model (LM) fine-tuning.
Experiments show that an end-to-end QAG model, which is computationally light at both training and inference times, is generally robust and outperforms other more convoluted approaches.
arXiv Detail & Related papers (2023-05-26T14:59:53Z) - Knowledge Transfer from Answer Ranking to Answer Generation [97.38378660163414]
We propose to train a GenQA model by transferring knowledge from a trained AS2 model.
We also propose to use the AS2 model prediction scores for loss weighting and score-conditioned input/output shaping.
arXiv Detail & Related papers (2022-10-23T21:51:27Z) - Closed-book Question Generation via Contrastive Learning [20.644215991166895]
We propose a new QG model empowered by a contrastive learning module and an answer reconstruction module.
We show how to leverage the proposed model to improve existing closed-book QA systems.
arXiv Detail & Related papers (2022-10-13T06:45:46Z) - Improving Unsupervised Question Answering via Summarization-Informed
Question Generation [47.96911338198302]
Question Generation (QG) is the task of generating a plausible question for a passage, answer> pair.
We make use of freely available news summary data, transforming declarative sentences into appropriate questions using dependency parsing, named entity recognition and semantic role labeling.
The resulting questions are then combined with the original news articles to train an end-to-end neural QG model.
arXiv Detail & Related papers (2021-09-16T13:08:43Z) - Template-Based Question Generation from Retrieved Sentences for Improved
Unsupervised Question Answering [98.48363619128108]
We propose an unsupervised approach to training QA models with generated pseudo-training data.
We show that generating questions for QA training by applying a simple template on a related, retrieved sentence rather than the original context sentence improves downstream QA performance.
arXiv Detail & Related papers (2020-04-24T17:57:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.