Solving Diffusion ODEs with Optimal Boundary Conditions for Better Image Super-Resolution
- URL: http://arxiv.org/abs/2305.15357v5
- Date: Mon, 1 Apr 2024 09:29:49 GMT
- Title: Solving Diffusion ODEs with Optimal Boundary Conditions for Better Image Super-Resolution
- Authors: Yiyang Ma, Huan Yang, Wenhan Yang, Jianlong Fu, Jiaying Liu,
- Abstract summary: randomness of diffusion models results in ineffectiveness and instability, making it challenging for users to guarantee the quality of SR results.
We propose a plug-and-play sampling method that owns the potential to benefit a series of diffusion-based SR methods.
The quality of SR results sampled by the proposed method with fewer steps outperforms the quality of results sampled by current methods with randomness from the same pre-trained diffusion-based SR model.
- Score: 82.50210340928173
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models, as a kind of powerful generative model, have given impressive results on image super-resolution (SR) tasks. However, due to the randomness introduced in the reverse process of diffusion models, the performances of diffusion-based SR models are fluctuating at every time of sampling, especially for samplers with few resampled steps. This inherent randomness of diffusion models results in ineffectiveness and instability, making it challenging for users to guarantee the quality of SR results. However, our work takes this randomness as an opportunity: fully analyzing and leveraging it leads to the construction of an effective plug-and-play sampling method that owns the potential to benefit a series of diffusion-based SR methods. More in detail, we propose to steadily sample high-quality SR images from pre-trained diffusion-based SR models by solving diffusion ordinary differential equations (diffusion ODEs) with optimal boundary conditions (BCs) and analyze the characteristics between the choices of BCs and their corresponding SR results. Our analysis shows the route to obtain an approximately optimal BC via an efficient exploration in the whole space. The quality of SR results sampled by the proposed method with fewer steps outperforms the quality of results sampled by current methods with randomness from the same pre-trained diffusion-based SR model, which means that our sampling method "boosts" current diffusion-based SR models without any additional training.
Related papers
- Degradation-Guided One-Step Image Super-Resolution with Diffusion Priors [75.24313405671433]
Diffusion-based image super-resolution (SR) methods have achieved remarkable success by leveraging large pre-trained text-to-image diffusion models as priors.
We introduce a novel one-step SR model, which significantly addresses the efficiency issue of diffusion-based SR methods.
Unlike existing fine-tuning strategies, we designed a degradation-guided Low-Rank Adaptation (LoRA) module specifically for SR.
arXiv Detail & Related papers (2024-09-25T16:15:21Z) - Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
Despite the state-of-the-art performance, diffusion models are known for their slow sample generation due to the extensive number of steps involved.
This paper contributes towards the first statistical theory for consistency models, formulating their training as a distribution discrepancy minimization problem.
arXiv Detail & Related papers (2024-06-23T20:34:18Z) - Diffusion Rejection Sampling [13.945372555871414]
Diffusion Rejection Sampling (DiffRS) is a rejection sampling scheme that aligns the sampling transition kernels with the true ones at each timestep.
The proposed method can be viewed as a mechanism that evaluates the quality of samples at each intermediate timestep and refines them with varying effort depending on the sample.
Empirical results demonstrate the state-of-the-art performance of DiffRS on the benchmark datasets and the effectiveness of DiffRS for fast diffusion samplers and large-scale text-to-image diffusion models.
arXiv Detail & Related papers (2024-05-28T07:00:28Z) - EM Distillation for One-step Diffusion Models [65.57766773137068]
We propose a maximum likelihood-based approach that distills a diffusion model to a one-step generator model with minimal loss of quality.
We develop a reparametrized sampling scheme and a noise cancellation technique that together stabilizes the distillation process.
arXiv Detail & Related papers (2024-05-27T05:55:22Z) - ACDMSR: Accelerated Conditional Diffusion Models for Single Image
Super-Resolution [84.73658185158222]
We propose a diffusion model-based super-resolution method called ACDMSR.
Our method adapts the standard diffusion model to perform super-resolution through a deterministic iterative denoising process.
Our approach generates more visually realistic counterparts for low-resolution images, emphasizing its effectiveness in practical scenarios.
arXiv Detail & Related papers (2023-07-03T06:49:04Z) - Bi-Noising Diffusion: Towards Conditional Diffusion Models with
Generative Restoration Priors [64.24948495708337]
We introduce a new method that brings predicted samples to the training data manifold using a pretrained unconditional diffusion model.
We perform comprehensive experiments to demonstrate the effectiveness of our approach on super-resolution, colorization, turbulence removal, and image-deraining tasks.
arXiv Detail & Related papers (2022-12-14T17:26:35Z) - Perception-Distortion Trade-off in the SR Space Spanned by Flow Models [21.597478894658263]
Flow-based generative super-resolution (SR) models learn to produce a diverse set of feasible SR solutions, called the SR space.
We present a simple but effective image ensembling/fusion approach to obtain a single SR image eliminating random artifacts and improving fidelity without significantly compromising perceptual quality.
arXiv Detail & Related papers (2022-09-18T13:12:21Z) - Learning Fast Samplers for Diffusion Models by Differentiating Through
Sample Quality [44.37533757879762]
We introduce Differentiable Diffusion Sampler Search (DDSS), a method that optimize fast samplers for any pre-trained diffusion model.
We also present Generalized Gaussian Diffusion Models (GGDM), a family of flexible non-Markovian samplers for diffusion models.
Our method is compatible with any pre-trained diffusion model without fine-tuning or re-training required.
arXiv Detail & Related papers (2022-02-11T18:53:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.