Revisiting non-English Text Simplification: A Unified Multilingual
Benchmark
- URL: http://arxiv.org/abs/2305.15678v1
- Date: Thu, 25 May 2023 03:03:29 GMT
- Title: Revisiting non-English Text Simplification: A Unified Multilingual
Benchmark
- Authors: Michael J. Ryan, Tarek Naous, Wei Xu
- Abstract summary: This paper introduces the MultiSim benchmark, a collection of 27 resources in 12 distinct languages containing over 1.7 million complex-simple sentence pairs.
Our experiments using MultiSim with pre-trained multilingual language models reveal exciting performance improvements from multilingual training in non-English settings.
- Score: 14.891068432456262
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in high-quality, large-scale English resources have
pushed the frontier of English Automatic Text Simplification (ATS) research.
However, less work has been done on multilingual text simplification due to the
lack of a diverse evaluation benchmark that covers complex-simple sentence
pairs in many languages. This paper introduces the MultiSim benchmark, a
collection of 27 resources in 12 distinct languages containing over 1.7 million
complex-simple sentence pairs. This benchmark will encourage research in
developing more effective multilingual text simplification models and
evaluation metrics. Our experiments using MultiSim with pre-trained
multilingual language models reveal exciting performance improvements from
multilingual training in non-English settings. We observe strong performance
from Russian in zero-shot cross-lingual transfer to low-resource languages. We
further show that few-shot prompting with BLOOM-176b achieves comparable
quality to reference simplifications outperforming fine-tuned models in most
languages. We validate these findings through human evaluation.
Related papers
- Synergistic Approach for Simultaneous Optimization of Monolingual, Cross-lingual, and Multilingual Information Retrieval [5.446052898856584]
This paper proposes a novel hybrid batch training strategy to improve zero-shot retrieval performance across monolingual, cross-lingual, and multilingual settings.
The approach fine-tunes multilingual language models using a mix of monolingual and cross-lingual question-answer pair batches sampled based on dataset size.
arXiv Detail & Related papers (2024-08-20T04:30:26Z) - Towards Building an End-to-End Multilingual Automatic Lyrics Transcription Model [14.39119862985503]
We aim to create a multilingual ALT system with available datasets.
Inspired by architectures that have been proven effective for English ALT, we adapt these techniques to the multilingual scenario.
We evaluate the performance of the multilingual model in comparison to its monolingual counterparts.
arXiv Detail & Related papers (2024-06-25T15:02:32Z) - Multi-Task Contrastive Learning for 8192-Token Bilingual Text Embeddings [22.71166607645311]
We introduce a novel suite of state-of-the-art bilingual text embedding models.
These models are capable of processing lengthy text inputs with up to 8192 tokens.
We have significantly improved the model performance on STS tasks.
We have expanded the Massive Text Embedding Benchmark to include benchmarks for German and Spanish embedding models.
arXiv Detail & Related papers (2024-02-26T20:53:12Z) - Breaking Language Barriers in Multilingual Mathematical Reasoning: Insights and Observations [59.056367787688146]
This paper pioneers exploring and training powerful Multilingual Math Reasoning (xMR) LLMs.
We construct the first multilingual math reasoning instruction dataset, MGSM8KInstruct, encompassing ten distinct languages.
By utilizing translation, we construct the first multilingual math reasoning instruction dataset, MGSM8KInstruct, encompassing ten distinct languages.
arXiv Detail & Related papers (2023-10-31T08:09:20Z) - MULTITuDE: Large-Scale Multilingual Machine-Generated Text Detection
Benchmark [10.92793962395538]
MultiTuDE is a novel benchmarking dataset for multilingual machine-generated text detection.
It consists of 74,081 authentic and machine-generated texts in 11 languages.
We compare the performance of zero-shot (statistical and black-box) and fine-tuned detectors.
arXiv Detail & Related papers (2023-10-20T15:57:17Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
Cross-lingual transfer of language models trained on high-resource languages like English has been widely studied for many NLP tasks.
We introduce XSGD for cross-lingual alignment pretraining, a parallel and large-scale multilingual conversation dataset.
To facilitate aligned cross-lingual representations, we develop an efficient prompt-tuning-based method for learning alignment prompts.
arXiv Detail & Related papers (2023-04-03T18:46:01Z) - Multilingual Relation Classification via Efficient and Effective
Prompting [9.119073318043952]
We present the first work on prompt-based multilingual relation classification (RC)
We introduce an efficient and effective method that constructs prompts from relation triples and involves only minimal translation for the class labels.
We evaluate its performance in fully supervised, few-shot and zero-shot scenarios, and analyze its effectiveness across 14 languages.
arXiv Detail & Related papers (2022-10-25T08:40:23Z) - IGLUE: A Benchmark for Transfer Learning across Modalities, Tasks, and
Languages [87.5457337866383]
We introduce the Image-Grounded Language Understanding Evaluation benchmark.
IGLUE brings together visual question answering, cross-modal retrieval, grounded reasoning, and grounded entailment tasks across 20 diverse languages.
We find that translate-test transfer is superior to zero-shot transfer and that few-shot learning is hard to harness for many tasks.
arXiv Detail & Related papers (2022-01-27T18:53:22Z) - XTREME-R: Towards More Challenging and Nuanced Multilingual Evaluation [93.80733419450225]
This paper analyzes the current state of cross-lingual transfer learning.
We extend XTREME to XTREME-R, which consists of an improved set of ten natural language understanding tasks.
arXiv Detail & Related papers (2021-04-15T12:26:12Z) - Improving Massively Multilingual Neural Machine Translation and
Zero-Shot Translation [81.7786241489002]
Massively multilingual models for neural machine translation (NMT) are theoretically attractive, but often underperform bilingual models and deliver poor zero-shot translations.
We argue that multilingual NMT requires stronger modeling capacity to support language pairs with varying typological characteristics.
We propose random online backtranslation to enforce the translation of unseen training language pairs.
arXiv Detail & Related papers (2020-04-24T17:21:32Z) - Knowledge Distillation for Multilingual Unsupervised Neural Machine
Translation [61.88012735215636]
Unsupervised neural machine translation (UNMT) has recently achieved remarkable results for several language pairs.
UNMT can only translate between a single language pair and cannot produce translation results for multiple language pairs at the same time.
In this paper, we empirically introduce a simple method to translate between thirteen languages using a single encoder and a single decoder.
arXiv Detail & Related papers (2020-04-21T17:26:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.