pFedSim: Similarity-Aware Model Aggregation Towards Personalized
Federated Learning
- URL: http://arxiv.org/abs/2305.15706v1
- Date: Thu, 25 May 2023 04:25:55 GMT
- Title: pFedSim: Similarity-Aware Model Aggregation Towards Personalized
Federated Learning
- Authors: Jiahao Tan, Yipeng Zhou, Gang Liu, Jessie Hui Wang, Shui Yu
- Abstract summary: federated learning (FL) paradigm emerges to preserve data privacy during model training.
One of biggest challenges in FL lies in the non-IID (not identical and independently distributed) data.
We propose a novel pFedSim (pFL based on model similarity) algorithm in this work.
- Score: 27.668944118750115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The federated learning (FL) paradigm emerges to preserve data privacy during
model training by only exposing clients' model parameters rather than original
data. One of the biggest challenges in FL lies in the non-IID (not identical
and independently distributed) data (a.k.a., data heterogeneity) distributed on
clients. To address this challenge, various personalized FL (pFL) methods are
proposed such as similarity-based aggregation and model decoupling. The former
one aggregates models from clients of a similar data distribution. The later
one decouples a neural network (NN) model into a feature extractor and a
classifier. Personalization is captured by classifiers which are obtained by
local training. To advance pFL, we propose a novel pFedSim (pFL based on model
similarity) algorithm in this work by combining these two kinds of methods.
More specifically, we decouple a NN model into a personalized feature
extractor, obtained by aggregating models from similar clients, and a
classifier, which is obtained by local training and used to estimate client
similarity. Compared with the state-of-the-art baselines, the advantages of
pFedSim include: 1) significantly improved model accuracy; 2) low communication
and computation overhead; 3) a low risk of privacy leakage; 4) no requirement
for any external public information. To demonstrate the superiority of pFedSim,
extensive experiments are conducted on real datasets. The results validate the
superb performance of our algorithm which can significantly outperform
baselines under various heterogeneous data settings.
Related papers
- CoDream: Exchanging dreams instead of models for federated aggregation
with heterogeneous models [8.85591781936764]
We present a novel framework called CoDream, where clients collaboratively optimize randomly data.
Our key insight is that jointly optimizing this data can effectively capture the properties of the global data distribution.
We empirically validate CoDream on standard FL tasks, demonstrating competitive performance despite not sharing model parameters.
arXiv Detail & Related papers (2024-02-25T03:07:32Z) - Exploiting Label Skews in Federated Learning with Model Concatenation [39.38427550571378]
Federated Learning (FL) has emerged as a promising solution to perform deep learning on different data owners without exchanging raw data.
Among different non-IID types, label skews have been challenging and common in image classification and other tasks.
We propose FedConcat, a simple and effective approach that degrades these local models as the base of the global model.
arXiv Detail & Related papers (2023-12-11T10:44:52Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
We propose federated learning with consensus-oriented generation (FedCOG)
FedCOG consists of two key components at the client side: complementary data generation and knowledge-distillation-based model training.
Experiments on classical and real-world FL datasets show that FedCOG consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-12-10T18:49:59Z) - PFL-GAN: When Client Heterogeneity Meets Generative Models in
Personalized Federated Learning [55.930403371398114]
We propose a novel generative adversarial network (GAN) sharing and aggregation strategy for personalized learning (PFL)
PFL-GAN addresses the client heterogeneity in different scenarios. More specially, we first learn the similarity among clients and then develop an weighted collaborative data aggregation.
The empirical results through the rigorous experimentation on several well-known datasets demonstrate the effectiveness of PFL-GAN.
arXiv Detail & Related papers (2023-08-23T22:38:35Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
We show how a new model, similar to a logistic regression, may be learned from aggregated data only by approximating the unobserved feature distribution with a maximum entropy hypothesis.
We present empirical evidence on several public datasets that the model learned this way can achieve performances comparable to those of a logistic model trained with the full unaggregated data.
arXiv Detail & Related papers (2022-10-05T09:17:27Z) - A Personalized Federated Learning Algorithm: an Application in Anomaly
Detection [0.6700873164609007]
Federated Learning (FL) has recently emerged as a promising method to overcome data privacy and transmission issues.
In FL, datasets collected from different devices or sensors are used to train local models (clients) each of which shares its learning with a centralized model (server)
This paper proposes a novel Personalized FedAvg (PC-FedAvg) which aims to control weights communication and aggregation augmented with a tailored learning algorithm to personalize the resulting models at each client.
arXiv Detail & Related papers (2021-11-04T04:57:11Z) - PFA: Privacy-preserving Federated Adaptation for Effective Model
Personalization [6.66389628571674]
Federated learning (FL) has become a prevalent distributed machine learning paradigm with improved privacy.
This paper introduces a new concept called federated adaptation, targeting at adapting the trained model in a federated manner to achieve better personalization results.
We propose PFA, a framework to accomplish Privacy-preserving Federated Adaptation.
arXiv Detail & Related papers (2021-03-02T08:07:34Z) - Ensemble Distillation for Robust Model Fusion in Federated Learning [72.61259487233214]
Federated Learning (FL) is a machine learning setting where many devices collaboratively train a machine learning model.
In most of the current training schemes the central model is refined by averaging the parameters of the server model and the updated parameters from the client side.
We propose ensemble distillation for model fusion, i.e. training the central classifier through unlabeled data on the outputs of the models from the clients.
arXiv Detail & Related papers (2020-06-12T14:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.