The False Promise of Imitating Proprietary LLMs
- URL: http://arxiv.org/abs/2305.15717v1
- Date: Thu, 25 May 2023 05:00:12 GMT
- Title: The False Promise of Imitating Proprietary LLMs
- Authors: Arnav Gudibande, Eric Wallace, Charlie Snell, Xinyang Geng, Hao Liu,
Pieter Abbeel, Sergey Levine, Dawn Song
- Abstract summary: An emerging method to cheaply improve a weaker language model is to finetune it on outputs from a stronger model.
This approach looks to cheaply imitate the proprietary model's capabilities using a weaker open-source model.
We first finetune a series of LMs that imitate ChatGPT using varying base model sizes.
We then evaluate the models using crowd raters and canonical NLP benchmarks.
- Score: 158.65692029352584
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An emerging method to cheaply improve a weaker language model is to finetune
it on outputs from a stronger model, such as a proprietary system like ChatGPT
(e.g., Alpaca, Self-Instruct, and others). This approach looks to cheaply
imitate the proprietary model's capabilities using a weaker open-source model.
In this work, we critically analyze this approach. We first finetune a series
of LMs that imitate ChatGPT using varying base model sizes (1.5B--13B), data
sources, and imitation data amounts (0.3M--150M tokens). We then evaluate the
models using crowd raters and canonical NLP benchmarks. Initially, we were
surprised by the output quality of our imitation models -- they appear far
better at following instructions, and crowd workers rate their outputs as
competitive with ChatGPT. However, when conducting more targeted automatic
evaluations, we find that imitation models close little to none of the gap from
the base LM to ChatGPT on tasks that are not heavily supported in the imitation
data. We show that these performance discrepancies may slip past human raters
because imitation models are adept at mimicking ChatGPT's style but not its
factuality. Overall, we conclude that model imitation is a false promise: there
exists a substantial capabilities gap between open and closed LMs that, with
current methods, can only be bridged using an unwieldy amount of imitation data
or by using more capable base LMs. In turn, we argue that the highest leverage
action for improving open-source models is to tackle the difficult challenge of
developing better base LMs, rather than taking the shortcut of imitating
proprietary systems.
Related papers
- DALD: Improving Logits-based Detector without Logits from Black-box LLMs [56.234109491884126]
Large Language Models (LLMs) have revolutionized text generation, producing outputs that closely mimic human writing.
We present Distribution-Aligned LLMs Detection (DALD), an innovative framework that redefines the state-of-the-art performance in black-box text detection.
DALD is designed to align the surrogate model's distribution with that of unknown target LLMs, ensuring enhanced detection capability and resilience against rapid model iterations.
arXiv Detail & Related papers (2024-06-07T19:38:05Z) - Replacing Judges with Juries: Evaluating LLM Generations with a Panel of Diverse Models [56.02275285521847]
We propose to evaluate models using a Panel of LLm evaluators (PoLL)
We find that using a PoLL composed of a larger number of smaller models outperforms a single large judge, exhibits less intra-model bias due to its composition of disjoint model families, and does so while being over seven times less expensive.
arXiv Detail & Related papers (2024-04-29T15:33:23Z) - Advancing the Robustness of Large Language Models through Self-Denoised Smoothing [50.54276872204319]
Large language models (LLMs) have achieved significant success, but their vulnerability to adversarial perturbations has raised considerable concerns.
We propose to leverage the multitasking nature of LLMs to first denoise the noisy inputs and then to make predictions based on these denoised versions.
Unlike previous denoised smoothing techniques in computer vision, which require training a separate model to enhance the robustness of LLMs, our method offers significantly better efficiency and flexibility.
arXiv Detail & Related papers (2024-04-18T15:47:00Z) - MiniLLM: Knowledge Distillation of Large Language Models [112.93051247165089]
Knowledge Distillation (KD) is a promising technique for reducing the high computational demand of large language models (LLMs)
We propose a KD approach that distills LLMs into smaller language models.
Our method is scalable for different model families with 120M to 13B parameters.
arXiv Detail & Related papers (2023-06-14T14:44:03Z) - Orca: Progressive Learning from Complex Explanation Traces of GPT-4 [22.526048553548726]
We develop Orca, a 13-billion parameter model that learns to imitate the reasoning process of LFMs.
Orca learns from rich signals from GPT-4 including explanation traces; step-by-step thought processes; and other complex instructions.
Orca surpasses conventional state-of-the-art instruction-tuned models such as Vicuna-13B by more than 100% in complex zero-shot reasoning benchmarks.
arXiv Detail & Related papers (2023-06-05T08:58:39Z) - Chain-of-Thought Hub: A Continuous Effort to Measure Large Language
Models' Reasoning Performance [35.38549845444575]
Chain-of-Thought Hub is an open-source evaluation suite on the multi-step reasoning capabilities of large language models.
This work proposes Chain-of-Thought Hub, an open-source evaluation suite on the multi-step reasoning capabilities of large language models.
arXiv Detail & Related papers (2023-05-26T23:46:42Z) - Aligning Large Language Models through Synthetic Feedback [43.84431341195111]
We propose a novel alignment learning framework with synthetic feedback not dependent on extensive human annotations.
In human evaluation, our model is preferred to Alpaca and Dolly-v2, 55.0% and 58.5% of the time, respectively.
arXiv Detail & Related papers (2023-05-23T06:41:16Z) - Evaluation of HTR models without Ground Truth Material [2.4792948967354236]
evaluation of Handwritten Text Recognition models during their development is straightforward.
But the evaluation process becomes tricky as soon as we switch from development to application.
We show that lexicon-based evaluation can compete with lexicon-based methods.
arXiv Detail & Related papers (2022-01-17T01:26:09Z) - AvgOut: A Simple Output-Probability Measure to Eliminate Dull Responses [97.50616524350123]
We build dialogue models that are dynamically aware of what utterances or tokens are dull without any feature-engineering.
The first model, MinAvgOut, directly maximizes the diversity score through the output distributions of each batch.
The second model, Label Fine-Tuning (LFT), prepends to the source sequence a label continuously scaled by the diversity score to control the diversity level.
The third model, RL, adopts Reinforcement Learning and treats the diversity score as a reward signal.
arXiv Detail & Related papers (2020-01-15T18:32:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.