Unifying gradient regularization for Heterogeneous Graph Neural Networks
- URL: http://arxiv.org/abs/2305.15811v2
- Date: Fri, 26 May 2023 17:19:52 GMT
- Title: Unifying gradient regularization for Heterogeneous Graph Neural Networks
- Authors: Xiao Yang and Xuejiao Zhao and Zhiqi Shen
- Abstract summary: We propose a novel gradient regularization method called Grug, which iteratively applies regularization to the gradients generated by both propagated messages and the node features during the message-passing process.
Grug provides a unified framework integrating graph topology and node features, based on which we conduct a detailed theoretical analysis of their effectiveness.
- Score: 6.3093033645568015
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heterogeneous Graph Neural Networks (HGNNs) are a class of powerful deep
learning methods widely used to learn representations of heterogeneous graphs.
Despite the fast development of HGNNs, they still face some challenges such as
over-smoothing, and non-robustness. Previous studies have shown that these
problems can be reduced by using gradient regularization methods. However, the
existing gradient regularization methods focus on either graph topology or node
features. There is no universal approach to integrate these features, which
severely affects the efficiency of regularization. In addition, the inclusion
of gradient regularization into HGNNs sometimes leads to some problems, such as
an unstable training process, increased complexity and insufficient coverage
regularized information. Furthermore, there is still short of a complete
theoretical analysis of the effects of gradient regularization on HGNNs. In
this paper, we propose a novel gradient regularization method called Grug,
which iteratively applies regularization to the gradients generated by both
propagated messages and the node features during the message-passing process.
Grug provides a unified framework integrating graph topology and node features,
based on which we conduct a detailed theoretical analysis of their
effectiveness. Specifically, the theoretical analyses elaborate the advantages
of Grug: 1) Decreasing sample variance during the training process (Stability);
2) Enhancing the generalization of the model (Universality); 3) Reducing the
complexity of the model (Simplicity); 4) Improving the integrity and diversity
of graph information utilization (Diversity). As a result, Grug has the
potential to surpass the theoretical upper bounds set by DropMessage (AAAI-23
Distinguished Papers). In addition, we evaluate Grug on five public real-world
datasets with two downstream tasks...
Related papers
- Graph Classification via Reference Distribution Learning: Theory and Practice [24.74871206083017]
This work introduces Graph Reference Distribution Learning (GRDL), an efficient and accurate graph classification method.
GRDL treats each graph's latent node embeddings given by GNN layers as a discrete distribution, enabling direct classification without global pooling.
Experiments on moderate-scale and large-scale graph datasets show the superiority of GRDL over the state-of-the-art.
arXiv Detail & Related papers (2024-08-21T06:42:22Z) - A Manifold Perspective on the Statistical Generalization of Graph Neural Networks [84.01980526069075]
We take a manifold perspective to establish the statistical generalization theory of GNNs on graphs sampled from a manifold in the spectral domain.
We prove that the generalization bounds of GNNs decrease linearly with the size of the graphs in the logarithmic scale, and increase linearly with the spectral continuity constants of the filter functions.
arXiv Detail & Related papers (2024-06-07T19:25:02Z) - Two Heads Are Better Than One: Boosting Graph Sparse Training via
Semantic and Topological Awareness [80.87683145376305]
Graph Neural Networks (GNNs) excel in various graph learning tasks but face computational challenges when applied to large-scale graphs.
We propose Graph Sparse Training ( GST), which dynamically manipulates sparsity at the data level.
GST produces a sparse graph with maximum topological integrity and no performance degradation.
arXiv Detail & Related papers (2024-02-02T09:10:35Z) - Learning to Reweight for Graph Neural Network [63.978102332612906]
Graph Neural Networks (GNNs) show promising results for graph tasks.
Existing GNNs' generalization ability will degrade when there exist distribution shifts between testing and training graph data.
We propose a novel nonlinear graph decorrelation method, which can substantially improve the out-of-distribution generalization ability.
arXiv Detail & Related papers (2023-12-19T12:25:10Z) - Robust Graph Neural Network based on Graph Denoising [10.564653734218755]
Graph Neural Networks (GNNs) have emerged as a notorious alternative to address learning problems dealing with non-Euclidean datasets.
This work proposes a robust implementation of GNNs that explicitly accounts for the presence of perturbations in the observed topology.
arXiv Detail & Related papers (2023-12-11T17:43:57Z) - Implicit Graph Neural Diffusion Networks: Convergence, Generalization,
and Over-Smoothing [7.984586585987328]
Implicit Graph Neural Networks (GNNs) have achieved significant success in addressing graph learning problems.
We introduce a geometric framework for designing implicit graph diffusion layers based on a parameterized graph Laplacian operator.
We show how implicit GNN layers can be viewed as the fixed-point equation of a Dirichlet energy minimization problem.
arXiv Detail & Related papers (2023-08-07T05:22:33Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Gradient scarcity with Bilevel Optimization for Graph Learning [0.0]
gradient scarcity occurs when learning graphs by minimizing a loss on a subset of nodes causes edges between unlabelled nodes that are far from labelled ones to receive zero gradients.
We give a precise mathematical characterization of this phenomenon, and prove it also emerges in bilevel optimization.
To alleviate this issue, we study several solutions: we propose to resort to latent graph learning using a Graph-to-Graph model (G2G), graph regularization to impose a prior structure on the graph, or optimizing on a larger graph than the original one with a reduced diameter.
arXiv Detail & Related papers (2023-03-24T12:37:43Z) - Deep Graph-level Anomaly Detection by Glocal Knowledge Distillation [61.39364567221311]
Graph-level anomaly detection (GAD) describes the problem of detecting graphs that are abnormal in their structure and/or the features of their nodes.
One of the challenges in GAD is to devise graph representations that enable the detection of both locally- and globally-anomalous graphs.
We introduce a novel deep anomaly detection approach for GAD that learns rich global and local normal pattern information by joint random distillation of graph and node representations.
arXiv Detail & Related papers (2021-12-19T05:04:53Z) - Towards Scale-Invariant Graph-related Problem Solving by Iterative
Homogeneous Graph Neural Networks [39.370875358317946]
Current graph neural networks (GNNs) lack generalizability with respect to scales (graph sizes, graph diameters, edge weights, etc.) when solving many graph analysis problems.
We propose several extensions to address the issue. First, inspired by the dependency of the number of iteration of common graph theory algorithms on graph size, we learn to terminate the message passing process in GNNs adaptively according to the progress.
Second, inspired by the fact that many graph theory algorithms are homogeneous with respect to graph weights, we introduce homogeneous transformation layers that are universal homogeneous function approximators, to convert ordinary G
arXiv Detail & Related papers (2020-10-26T12:57:28Z) - Gated Graph Recurrent Neural Networks [176.3960927323358]
We introduce Graph Recurrent Neural Networks (GRNNs) as a general learning framework for graph processes.
To address the problem of vanishing gradients, we put forward GRNNs with three different gating mechanisms: time, node and edge gates.
The numerical results also show that GRNNs outperform GNNs and RNNs, highlighting the importance of taking both the temporal and graph structures of a graph process into account.
arXiv Detail & Related papers (2020-02-03T22:35:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.