Accurate generation of stochastic dynamics based on multi-model
Generative Adversarial Networks
- URL: http://arxiv.org/abs/2305.15920v2
- Date: Tue, 1 Aug 2023 12:23:25 GMT
- Title: Accurate generation of stochastic dynamics based on multi-model
Generative Adversarial Networks
- Authors: Daniele Lanzoni, Olivier Pierre-Louis, Francesco Montalenti
- Abstract summary: Generative Adversarial Networks (GANs) have shown immense potential in fields such as text and image generation.
Here we quantitatively test this approach by applying it to a prototypical process on a lattice.
Importantly, the discreteness of the model is retained despite the noise.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative Adversarial Networks (GANs) have shown immense potential in fields
such as text and image generation. Only very recently attempts to exploit GANs
to statistical-mechanics models have been reported. Here we quantitatively test
this approach by applying it to a prototypical stochastic process on a lattice.
By suitably adding noise to the original data we succeed in bringing both the
Generator and the Discriminator loss functions close to their ideal value.
Importantly, the discreteness of the model is retained despite the noise. As
typical for adversarial approaches, oscillations around the convergence limit
persist also at large epochs. This undermines model selection and the quality
of the generated trajectories. We demonstrate that a simple multi-model
procedure where stochastic trajectories are advanced at each step upon randomly
selecting a Generator leads to a remarkable increase in accuracy. This is
illustrated by quantitative analysis of both the predicted equilibrium
probability distribution and of the escape-time distribution. Based on the
reported findings, we believe that GANs are a promising tool to tackle complex
statistical dynamics by machine learning techniques
Related papers
- Parallelly Tempered Generative Adversarial Networks [7.94957965474334]
A generative adversarial network (GAN) has been a representative backbone model in generative artificial intelligence (AI)
This work analyzes the training instability and inefficiency in the presence of mode collapse by linking it to multimodality in the target distribution.
With our newly developed GAN objective function, the generator can learn all the tempered distributions simultaneously.
arXiv Detail & Related papers (2024-11-18T18:01:13Z) - GenFormer: A Deep-Learning-Based Approach for Generating Multivariate
Stochastic Processes [5.679243827959339]
We propose a Transformer-based deep learning model that learns a mapping between a Markov state sequence and time series values.
The GenFormer model is applied to simulate synthetic wind speed data at various stations in Florida to calculate exceedance probabilities for risk management.
arXiv Detail & Related papers (2024-02-03T03:50:18Z) - Time-series Generation by Contrastive Imitation [87.51882102248395]
We study a generative framework that seeks to combine the strengths of both: Motivated by a moment-matching objective to mitigate compounding error, we optimize a local (but forward-looking) transition policy.
At inference, the learned policy serves as the generator for iterative sampling, and the learned energy serves as a trajectory-level measure for evaluating sample quality.
arXiv Detail & Related papers (2023-11-02T16:45:25Z) - Improving Out-of-Distribution Robustness of Classifiers via Generative
Interpolation [56.620403243640396]
Deep neural networks achieve superior performance for learning from independent and identically distributed (i.i.d.) data.
However, their performance deteriorates significantly when handling out-of-distribution (OoD) data.
We develop a simple yet effective method called Generative Interpolation to fuse generative models trained from multiple domains for synthesizing diverse OoD samples.
arXiv Detail & Related papers (2023-07-23T03:53:53Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Effective Dynamics of Generative Adversarial Networks [16.51305515824504]
Generative adversarial networks (GANs) are a class of machine-learning models that use adversarial training to generate new samples.
One major form of training failure, known as mode collapse, involves the generator failing to reproduce the full diversity of modes in the target probability distribution.
We present an effective model of GAN training, which captures the learning dynamics by replacing the generator neural network with a collection of particles in the output space.
arXiv Detail & Related papers (2022-12-08T22:04:01Z) - An Energy-Based Prior for Generative Saliency [62.79775297611203]
We propose a novel generative saliency prediction framework that adopts an informative energy-based model as a prior distribution.
With the generative saliency model, we can obtain a pixel-wise uncertainty map from an image, indicating model confidence in the saliency prediction.
Experimental results show that our generative saliency model with an energy-based prior can achieve not only accurate saliency predictions but also reliable uncertainty maps consistent with human perception.
arXiv Detail & Related papers (2022-04-19T10:51:00Z) - Latent Gaussian Model Boosting [0.0]
Tree-boosting shows excellent predictive accuracy on many data sets.
We obtain increased predictive accuracy compared to existing approaches in both simulated and real-world data experiments.
arXiv Detail & Related papers (2021-05-19T07:36:30Z) - Continual Learning with Fully Probabilistic Models [70.3497683558609]
We present an approach for continual learning based on fully probabilistic (or generative) models of machine learning.
We propose a pseudo-rehearsal approach using a Gaussian Mixture Model (GMM) instance for both generator and classifier functionalities.
We show that GMR achieves state-of-the-art performance on common class-incremental learning problems at very competitive time and memory complexity.
arXiv Detail & Related papers (2021-04-19T12:26:26Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z) - Combining data assimilation and machine learning to emulate a dynamical
model from sparse and noisy observations: a case study with the Lorenz 96
model [0.0]
The method consists in applying iteratively a data assimilation step, here an ensemble Kalman filter, and a neural network.
Data assimilation is used to optimally combine a surrogate model with sparse data.
The output analysis is spatially complete and is used as a training set by the neural network to update the surrogate model.
Numerical experiments have been carried out using the chaotic 40-variables Lorenz 96 model, proving both convergence and statistical skill of the proposed hybrid approach.
arXiv Detail & Related papers (2020-01-06T12:26:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.