Collaborative Blind Image Deblurring
- URL: http://arxiv.org/abs/2305.16034v1
- Date: Thu, 25 May 2023 13:14:29 GMT
- Title: Collaborative Blind Image Deblurring
- Authors: Thomas Eboli, Jean-Michel Morel, Gabriele Facciolo
- Abstract summary: We show that when extracting patches of similar underlying blur is possible, jointly processing the stack of patches yields superior accuracy than handling them separately.
We present three practical patch extraction strategies for image sharpening, camera shake removal and optical aberration correction, and validate the proposed approach on both synthetic and real-world benchmarks.
- Score: 15.555393702795076
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Blurry images usually exhibit similar blur at various locations across the
image domain, a property barely captured in nowadays blind deblurring neural
networks. We show that when extracting patches of similar underlying blur is
possible, jointly processing the stack of patches yields superior accuracy than
handling them separately. Our collaborative scheme is implemented in a neural
architecture with a pooling layer on the stack dimension. We present three
practical patch extraction strategies for image sharpening, camera shake
removal and optical aberration correction, and validate the proposed approach
on both synthetic and real-world benchmarks. For each blur instance, the
proposed collaborative strategy yields significant quantitative and qualitative
improvements.
Related papers
- Neural Spline Fields for Burst Image Fusion and Layer Separation [40.9442467471977]
We propose a versatile intermediate representation: a two-layer alpha-composited image plus flow model constructed with neural spline fields.
Our method is able to jointly fuse a burst image capture into one high-resolution reconstruction and decompose it into transmission and obstruction layers.
We find that, with no post-processing steps or learned priors, our generalizable model is able to outperform existing dedicated single-image and multi-view obstruction removal approaches.
arXiv Detail & Related papers (2023-12-21T18:54:19Z) - Layered Rendering Diffusion Model for Zero-Shot Guided Image Synthesis [60.260724486834164]
This paper introduces innovative solutions to enhance spatial controllability in diffusion models reliant on text queries.
We present two key innovations: Vision Guidance and the Layered Rendering Diffusion framework.
We apply our method to three practical applications: bounding box-to-image, semantic mask-to-image and image editing.
arXiv Detail & Related papers (2023-11-30T10:36:19Z) - Patch-Based Deep Unsupervised Image Segmentation using Graph Cuts [0.0]
We propose a patch-based unsupervised image segmentation strategy that bridges advances in unsupervised feature extraction with the algorithmic help of classical graph-based methods.
We show that a simple convolutional neural network, trained to classify image patches, naturally leads to a state-of-the-art fully-convolutional unsupervised pixel-level segmenter.
arXiv Detail & Related papers (2023-11-01T19:59:25Z) - Parallax-Tolerant Unsupervised Deep Image Stitching [57.76737888499145]
We propose UDIS++, a parallax-tolerant unsupervised deep image stitching technique.
First, we propose a robust and flexible warp to model the image registration from global homography to local thin-plate spline motion.
To further eliminate the parallax artifacts, we propose to composite the stitched image seamlessly by unsupervised learning for seam-driven composition masks.
arXiv Detail & Related papers (2023-02-16T10:40:55Z) - SVBR-NET: A Non-Blind Spatially Varying Defocus Blur Removal Network [2.4975981795360847]
We propose a non-blind approach for image deblurring that can deal with spatially-varying kernels.
We introduce two encoder-decoder sub-networks that are fed with the blurry image and the estimated blur map.
The network is trained with synthetically blur kernels that are augmented to emulate blur maps produced by existing blur estimation methods.
arXiv Detail & Related papers (2022-06-26T17:21:12Z) - Deblurring via Stochastic Refinement [85.42730934561101]
We present an alternative framework for blind deblurring based on conditional diffusion models.
Our method is competitive in terms of distortion metrics such as PSNR.
arXiv Detail & Related papers (2021-12-05T04:36:09Z) - Digging Into Self-Supervised Learning of Feature Descriptors [14.47046413243358]
We propose a set of improvements that combined lead to powerful feature descriptors.
We show that increasing the search space from in-pair to in-batch for hard negative mining brings consistent improvement.
We demonstrate that a combination of synthetic homography transformation, color augmentation, and photorealistic image stylization produces useful representations.
arXiv Detail & Related papers (2021-10-10T12:22:44Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
We devise a hierarchical generative model that captures the multi-scale patch distribution of each training image.
The anomaly score is obtained by aggregating the patch-based votes of the correct transformation across scales and image regions.
arXiv Detail & Related papers (2021-04-29T17:49:48Z) - Depth image denoising using nuclear norm and learning graph model [107.51199787840066]
Group-based image restoration methods are more effective in gathering the similarity among patches.
For each patch, we find and group the most similar patches within a searching window.
The proposed method is superior to other current state-of-the-art denoising methods in both subjective and objective criterion.
arXiv Detail & Related papers (2020-08-09T15:12:16Z) - Image Fine-grained Inpainting [89.17316318927621]
We present a one-stage model that utilizes dense combinations of dilated convolutions to obtain larger and more effective receptive fields.
To better train this efficient generator, except for frequently-used VGG feature matching loss, we design a novel self-guided regression loss.
We also employ a discriminator with local and global branches to ensure local-global contents consistency.
arXiv Detail & Related papers (2020-02-07T03:45:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.