TranSFormer: Slow-Fast Transformer for Machine Translation
- URL: http://arxiv.org/abs/2305.16982v1
- Date: Fri, 26 May 2023 14:37:38 GMT
- Title: TranSFormer: Slow-Fast Transformer for Machine Translation
- Authors: Bei Li, Yi Jing, Xu Tan, Zhen Xing, Tong Xiao and Jingbo Zhu
- Abstract summary: We present a textbfSlow-textbfFast two-stream learning model, referred to as TrantextbfSFormer.
Our TranSFormer shows consistent BLEU improvements (larger than 1 BLEU point) on several machine translation benchmarks.
- Score: 52.12212173775029
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning multiscale Transformer models has been evidenced as a viable
approach to augmenting machine translation systems. Prior research has
primarily focused on treating subwords as basic units in developing such
systems. However, the incorporation of fine-grained character-level features
into multiscale Transformer has not yet been explored. In this work, we present
a \textbf{S}low-\textbf{F}ast two-stream learning model, referred to as
Tran\textbf{SF}ormer, which utilizes a ``slow'' branch to deal with subword
sequences and a ``fast'' branch to deal with longer character sequences. This
model is efficient since the fast branch is very lightweight by reducing the
model width, and yet provides useful fine-grained features for the slow branch.
Our TranSFormer shows consistent BLEU improvements (larger than 1 BLEU point)
on several machine translation benchmarks.
Related papers
- Modeling Context With Linear Attention for Scalable Document-Level
Translation [72.41955536834702]
We investigate the efficacy of a recent linear attention model on document translation and augment it with a sentential gate to promote a recency inductive bias.
We show that sentential gating further improves translation quality on IWSLT.
arXiv Detail & Related papers (2022-10-16T03:41:50Z) - Learning Multiscale Transformer Models for Sequence Generation [33.73729074207944]
We build a multiscale Transformer model by establishing relationships among scales based on word-boundary information and phrase-level prior knowledge.
Notably, it yielded consistent performance gains over the strong baseline on several test sets without sacrificing the efficiency.
arXiv Detail & Related papers (2022-06-19T07:28:54Z) - Glancing Transformer for Non-Autoregressive Neural Machine Translation [58.87258329683682]
We propose a method to learn word interdependency for single-pass parallel generation models.
With only single-pass parallel decoding, GLAT is able to generate high-quality translation with 8-15 times speedup.
arXiv Detail & Related papers (2020-08-18T13:04:03Z) - Learning Source Phrase Representations for Neural Machine Translation [65.94387047871648]
We propose an attentive phrase representation generation mechanism which is able to generate phrase representations from corresponding token representations.
In our experiments, we obtain significant improvements on the WMT 14 English-German and English-French tasks on top of the strong Transformer baseline.
arXiv Detail & Related papers (2020-06-25T13:43:11Z) - Multi-branch Attentive Transformer [152.07840447196384]
We propose a simple yet effective variant of Transformer called multi-branch attentive Transformer.
The attention layer is the average of multiple branches and each branch is an independent multi-head attention layer.
Experiments on machine translation, code generation and natural language understanding demonstrate that such a simple variant of Transformer brings significant improvements.
arXiv Detail & Related papers (2020-06-18T04:24:28Z) - Funnel-Transformer: Filtering out Sequential Redundancy for Efficient
Language Processing [112.2208052057002]
We propose Funnel-Transformer which gradually compresses the sequence of hidden states to a shorter one.
With comparable or fewer FLOPs, Funnel-Transformer outperforms the standard Transformer on a wide variety of sequence-level prediction tasks.
arXiv Detail & Related papers (2020-06-05T05:16:23Z) - Character-level Transformer-based Neural Machine Translation [5.699756532377753]
We discuss a novel, Transformer-based approach, that we compare, both in speed and in quality to the Transformer at subword and character levels.
We evaluate our models on 4 language pairs from WMT'15: DE-EN, CS-EN, FI-EN and RU-EN.
The proposed novel architecture can be trained on a single GPU and is 34% percent faster than the character-level Transformer.
arXiv Detail & Related papers (2020-05-22T15:40:43Z) - Efficient Wait-k Models for Simultaneous Machine Translation [46.01342928010307]
Simultaneous machine translation consists in starting output generation before the entire input sequence is available.
Wait-k decoders offer a simple but efficient approach for this problem.
We investigate the behavior of wait-k decoding in low resource settings for spoken corpora using IWSLT datasets.
arXiv Detail & Related papers (2020-05-18T11:14:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.