Formal Modelling for Multi-Robot Systems Under Uncertainty
- URL: http://arxiv.org/abs/2305.17018v2
- Date: Tue, 15 Aug 2023 14:01:42 GMT
- Title: Formal Modelling for Multi-Robot Systems Under Uncertainty
- Authors: Charlie Street, Masoumeh Mansouri, Bruno Lacerda
- Abstract summary: We review modelling formalisms for multi-robot systems under uncertainty.
We discuss how they can be used for planning, reinforcement learning, model checking, and simulation.
- Score: 11.21074891465253
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Purpose of Review: To effectively synthesise and analyse multi-robot
behaviour, we require formal task-level models which accurately capture
multi-robot execution. In this paper, we review modelling formalisms for
multi-robot systems under uncertainty, and discuss how they can be used for
planning, reinforcement learning, model checking, and simulation.
Recent Findings: Recent work has investigated models which more accurately
capture multi-robot execution by considering different forms of uncertainty,
such as temporal uncertainty and partial observability, and modelling the
effects of robot interactions on action execution. Other strands of work have
presented approaches for reducing the size of multi-robot models to admit more
efficient solution methods. This can be achieved by decoupling the robots under
independence assumptions, or reasoning over higher level macro actions.
Summary: Existing multi-robot models demonstrate a trade off between
accurately capturing robot dependencies and uncertainty, and being small enough
to tractably solve real world problems. Therefore, future research should
exploit realistic assumptions over multi-robot behaviour to develop smaller
models which retain accurate representations of uncertainty and robot
interactions; and exploit the structure of multi-robot problems, such as
factored state spaces, to develop scalable solution methods.
Related papers
- Innate Motivation for Robot Swarms by Minimizing Surprise: From Simple Simulations to Real-World Experiments [6.21540494241516]
Large-scale mobile multi-robot systems can be beneficial over monolithic robots because of higher potential for robustness and scalability.
Developing controllers for multi-robot systems is challenging because the multitude of interactions is hard to anticipate and difficult to model.
Innate motivation tries to avoid the specific formulation of rewards and work instead with different drivers, such as curiosity.
A unique advantage of the swarm robot case is that swarm members populate the robot's environment and can trigger more active behaviors in a self-referential loop.
arXiv Detail & Related papers (2024-05-04T06:25:58Z) - Active Exploration in Bayesian Model-based Reinforcement Learning for Robot Manipulation [8.940998315746684]
We propose a model-based reinforcement learning (RL) approach for robotic arm end-tasks.
We employ Bayesian neural network models to represent, in a probabilistic way, both the belief and information encoded in the dynamic model during exploration.
Our experiments show the advantages of our Bayesian model-based RL approach, with similar quality in the results than relevant alternatives.
arXiv Detail & Related papers (2024-04-02T11:44:37Z) - General-purpose foundation models for increased autonomy in
robot-assisted surgery [4.155479231940454]
This perspective article aims to provide a path toward increasing robot autonomy in robot-assisted surgery.
We argue that surgical robots are uniquely positioned to benefit from general-purpose models and provide three guiding actions toward increased autonomy in robot-assisted surgery.
arXiv Detail & Related papers (2024-01-01T06:15:16Z) - Distributional Instance Segmentation: Modeling Uncertainty and High
Confidence Predictions with Latent-MaskRCNN [77.0623472106488]
In this paper, we explore a class of distributional instance segmentation models using latent codes.
For robotic picking applications, we propose a confidence mask method to achieve the high precision necessary.
We show that our method can significantly reduce critical errors in robotic systems, including our newly released dataset of ambiguous scenes.
arXiv Detail & Related papers (2023-05-03T05:57:29Z) - A Capability and Skill Model for Heterogeneous Autonomous Robots [69.50862982117127]
capability modeling is considered a promising approach to semantically model functions provided by different machines.
This contribution investigates how to apply and extend capability models from manufacturing to the field of autonomous robots.
arXiv Detail & Related papers (2022-09-22T10:13:55Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
We focus on advancing the state-of-the-art in interpreting multimodal models.
Our proposed approach, DIME, enables accurate and fine-grained analysis of multimodal models.
arXiv Detail & Related papers (2022-03-03T20:52:47Z) - REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy
Transfer [57.045140028275036]
We consider the problem of transferring a policy across two different robots with significantly different parameters such as kinematics and morphology.
Existing approaches that train a new policy by matching the action or state transition distribution, including imitation learning methods, fail due to optimal action and/or state distribution being mismatched in different robots.
We propose a novel method named $REvolveR$ of using continuous evolutionary models for robotic policy transfer implemented in a physics simulator.
arXiv Detail & Related papers (2022-02-10T18:50:25Z) - Multi-Robot Collaborative Perception with Graph Neural Networks [6.383576104583731]
We propose a general-purpose Graph Neural Network (GNN) with the main goal to increase, in multi-robot perception tasks.
We show that the proposed framework can address multi-view visual perception problems such as monocular depth estimation and semantic segmentation.
arXiv Detail & Related papers (2022-01-05T18:47:07Z) - Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
Platforms [60.59764170868101]
Reinforcement learning methods can achieve significant performance but require a large amount of training data collected on the same robotic platform.
We formulate it as a few-shot meta-learning problem where the goal is to find a model that captures the common structure shared across different robotic platforms.
We experimentally evaluate our framework on a simulated reaching and a real-robot picking task using 400 simulated robots.
arXiv Detail & Related papers (2021-03-05T14:16:20Z) - Hyperparameters optimization for Deep Learning based emotion prediction
for Human Robot Interaction [0.2549905572365809]
We have proposed an Inception module based Convolutional Neural Network Architecture.
The model is implemented in a humanoid robot, NAO in real time and robustness of the model is evaluated.
arXiv Detail & Related papers (2020-01-12T05:25:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.