Toward Cost-effective Adaptive Random Testing: An Approximate Nearest Neighbor Approach
- URL: http://arxiv.org/abs/2305.17496v2
- Date: Tue, 19 Mar 2024 05:23:07 GMT
- Title: Toward Cost-effective Adaptive Random Testing: An Approximate Nearest Neighbor Approach
- Authors: Rubing Huang, Chenhui Cui, Junlong Lian, Dave Towey, Weifeng Sun, Haibo Chen,
- Abstract summary: Adaptive Random Testing (ART) enhances the testing effectiveness (including fault-detection capability) of Random Testing (RT)
Many ART algorithms have been investigated such as Fixed-Size-Candidate-Set ART (FSCS) and Restricted Random Testing (RRT)
- Score: 6.431858417308008
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adaptive Random Testing (ART) enhances the testing effectiveness (including fault-detection capability) of Random Testing (RT) by increasing the diversity of the random test cases throughout the input domain. Many ART algorithms have been investigated such as Fixed-Size-Candidate-Set ART (FSCS) and Restricted Random Testing (RRT), and have been widely used in many practical applications. Despite its popularity, ART suffers from the problem of high computational costs during test-case generation, especially as the number of test cases increases. Although several strategies have been proposed to enhance the ART testing efficiency, such as the forgetting strategy and the k-dimensional tree strategy, these algorithms still face some challenges, including: (1) Although these algorithms can reduce the computation time, their execution costs are still very high, especially when the number of test cases is large; and (2) To achieve low computational costs, they may sacrifice some fault-detection capability. In this paper, we propose an approach based on Approximate Nearest Neighbors (ANNs), called Locality-Sensitive Hashing ART (LSH-ART). When calculating distances among different test inputs, LSH-ART identifies the approximate (not necessarily exact) nearest neighbors for candidates in an efficient way. LSH-ART attempts to balance ART testing effectiveness and efficiency.
Related papers
- Simple and Provable Scaling Laws for the Test-Time Compute of Large Language Models [70.07661254213181]
We propose two principled algorithms for the test-time compute of large language models.
We prove theoretically that the failure probability of one algorithm decays to zero exponentially as its test-time compute grows.
arXiv Detail & Related papers (2024-11-29T05:29:47Z) - Adaptive Random Testing with Q-grams: The Illusion Comes True [13.166002843307663]
We introduce a novel framework for adaptive random testing that replaces pairwise distance computations with a compact aggregation of past executions.
Experiments show that ART with q-grams covers, on average, 4x more unique targets than random testing, and 3.5x more than ART using traditional distance-based methods.
arXiv Detail & Related papers (2024-10-23T14:26:51Z) - Scalable Similarity-Aware Test Suite Minimization with Reinforcement Learning [6.9290255098776425]
TripRL is a novel technique to produce a diverse reduced test suite with high test effectiveness.
We show that TripRL's runtime scales linearly with the magnitude of the Multi-Criteria Test Suite Minimization problem.
arXiv Detail & Related papers (2024-08-24T08:43:03Z) - Precise Error Rates for Computationally Efficient Testing [75.63895690909241]
We revisit the question of simple-versus-simple hypothesis testing with an eye towards computational complexity.
An existing test based on linear spectral statistics achieves the best possible tradeoff curve between type I and type II error rates.
arXiv Detail & Related papers (2023-11-01T04:41:16Z) - AdaStop: adaptive statistical testing for sound comparisons of Deep RL agents [17.481638913280403]
We propose a theoretically sound methodology for comparing the performance of a set of algorithms.
AdaStop is a new statistical test based on multiple group sequential tests.
arXiv Detail & Related papers (2023-06-19T12:22:56Z) - A Large-scale Multiple-objective Method for Black-box Attack against
Object Detection [70.00150794625053]
We propose to minimize the true positive rate and maximize the false positive rate, which can encourage more false positive objects to block the generation of new true positive bounding boxes.
We extend the standard Genetic Algorithm with Random Subset selection and Divide-and-Conquer, called GARSDC, which significantly improves the efficiency.
Compared with the state-of-art attack methods, GARSDC decreases by an average 12.0 in the mAP and queries by about 1000 times in extensive experiments.
arXiv Detail & Related papers (2022-09-16T08:36:42Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms.
For decision problems such as satisfiability (SAT), quality typically refers to the algorithm's runtime.
In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem.
We adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon.
arXiv Detail & Related papers (2021-09-13T18:10:52Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - Fast and stable MAP-Elites in noisy domains using deep grids [1.827510863075184]
Deep-Grid MAP-Elites is a variant of the MAP-Elites algorithm that uses an archive of similar previously encountered solutions to approximate the performance of a solution.
We show that this simple approach is significantly more resilient to noise on the behavioural descriptors, while achieving competitive performances in terms of fitness optimisation.
arXiv Detail & Related papers (2020-06-25T08:47:23Z) - Genetic Algorithms for Redundancy in Interaction Testing [0.6396288020763143]
Interaction testing involves designing a suite of tests, which guarantees to detect a fault if one exists among a small number of components interacting together.
Existing algorithms for constructing these test suites usually involve one "fast" algorithm for generating most of the tests, and another "slower" algorithm to "complete" the test suite.
We employ a genetic algorithm that generalizes these approaches that also incorporates redundancy by increasing the number of algorithms chosen, which we call "stages"
arXiv Detail & Related papers (2020-02-13T10:16:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.