Synthesizing a Progression of Subtasks for Block-Based Visual
Programming Tasks
- URL: http://arxiv.org/abs/2305.17518v1
- Date: Sat, 27 May 2023 16:24:36 GMT
- Title: Synthesizing a Progression of Subtasks for Block-Based Visual
Programming Tasks
- Authors: Alperen Tercan, Ahana Ghosh, Hasan Ferit Eniser, Maria Christakis,
Adish Singla
- Abstract summary: We propose a novel synthesis algorithm that generates a progression of subtasks that are high-quality, well-spaced in terms of their complexity.
We show the utility of our synthesis algorithm in improving the efficacy of AI agents for solving tasks in the Karel programming environment.
- Score: 21.33708484899808
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Block-based visual programming environments play an increasingly important
role in introducing computing concepts to K-12 students. In recent years, they
have also gained popularity in neuro-symbolic AI, serving as a benchmark to
evaluate general problem-solving and logical reasoning skills. The open-ended
and conceptual nature of these visual programming tasks make them challenging,
both for state-of-the-art AI agents as well as for novice programmers. A
natural approach to providing assistance for problem-solving is breaking down a
complex task into a progression of simpler subtasks; however, this is not
trivial given that the solution codes are typically nested and have non-linear
execution behavior. In this paper, we formalize the problem of synthesizing
such a progression for a given reference block-based visual programming task.
We propose a novel synthesis algorithm that generates a progression of subtasks
that are high-quality, well-spaced in terms of their complexity, and solving
this progression leads to solving the reference task. We show the utility of
our synthesis algorithm in improving the efficacy of AI agents (in this case,
neural program synthesizers) for solving tasks in the Karel programming
environment. Then, we conduct a user study to demonstrate that our synthesized
progression of subtasks can assist a novice programmer in solving tasks in the
Hour of Code: Maze Challenge by Code-dot-org.
Related papers
- Learning to Solve Abstract Reasoning Problems with Neurosymbolic Program Synthesis and Task Generation [0.8701566919381223]
We present TransCoder, a method for solving abstract problems based on neural program synthesis.
We conduct a comprehensive analysis of decisions made by the generative module of the proposed architecture.
arXiv Detail & Related papers (2024-10-06T13:42:53Z) - Recursive Visual Programming [53.76415744371285]
We propose Recursive Visual Programming (RVP), which simplifies generated routines, provides more efficient problem solving, and can manage more complex data structures.
We show RVP's efficacy through extensive experiments on benchmarks including VSR, COVR, GQA, and NextQA.
arXiv Detail & Related papers (2023-12-04T17:27:24Z) - SEGO: Sequential Subgoal Optimization for Mathematical Problem-Solving [64.38649623473626]
Large Language Models (LLMs) have driven substantial progress in artificial intelligence.
We propose a novel framework called textbfSEquential subtextbfGoal textbfOptimization (SEGO) to enhance LLMs' ability to solve mathematical problems.
arXiv Detail & Related papers (2023-10-19T17:56:40Z) - Neural Task Synthesis for Visual Programming [22.918489170257704]
We seek to design neural models that can automatically generate programming tasks for a given specification in the context of visual programming domains.
We propose a novel neuro-symbolic technique, NeurTaskSyn, that can synthesize programming tasks for a specification given in the form of desired programming concepts.
arXiv Detail & Related papers (2023-05-26T01:08:18Z) - Learning Iterative Reasoning through Energy Minimization [77.33859525900334]
We present a new framework for iterative reasoning with neural networks.
We train a neural network to parameterize an energy landscape over all outputs.
We implement each step of the iterative reasoning as an energy minimization step to find a minimal energy solution.
arXiv Detail & Related papers (2022-06-30T17:44:20Z) - From {Solution Synthesis} to {Student Attempt Synthesis} for Block-Based
Visual Programming Tasks [20.64766977405438]
We introduce a novel benchmark, StudentSyn, centered around the following challenge.
For a given student, synthesize the student's attempt on a new target task after observing the student's attempt on a fixed reference task.
This challenge is akin to that of program synthesis; however, instead of a solution (i.e., program an expert would write), the goal here is to synthesize a student attempt (i.e., program that a given student would write)
arXiv Detail & Related papers (2022-05-03T01:32:47Z) - Compositional Generalization and Decomposition in Neural Program
Synthesis [59.356261137313275]
In this paper, we focus on measuring the ability of learned program synthesizers to compositionally generalize.
We first characterize several different axes along which program synthesis methods would be desired to generalize.
We introduce a benchmark suite of tasks to assess these abilities based on two popular existing datasets.
arXiv Detail & Related papers (2022-04-07T22:16:05Z) - Recent Developments in Program Synthesis with Evolutionary Algorithms [1.8047694351309207]
We identify the relevant evolutionary program synthesis approaches and provide an in-depth analysis of their performance.
The most influential approaches we identify are stack-based, grammar-guided, as well as linear genetic programming.
For future work, we encourage researchers not only to use a program's output for assessing the quality of a solution but also the way towards a solution.
arXiv Detail & Related papers (2021-08-27T11:38:27Z) - Neural-Symbolic Solver for Math Word Problems with Auxiliary Tasks [130.70449023574537]
Our NS-r consists of a problem reader to encode problems, a programmer to generate symbolic equations, and a symbolic executor to obtain answers.
Along with target expression supervision, our solver is also optimized via 4 new auxiliary objectives to enforce different symbolic reasoning.
arXiv Detail & Related papers (2021-07-03T13:14:58Z) - Program Synthesis Guided Reinforcement Learning [34.342362868490525]
Key challenge for reinforcement learning is solving long-horizon planning and control problems.
Recent work has proposed leveraging programs to help guide the learning algorithm in these settings.
We propose an approach that leverages program synthesis to automatically generate the guiding program.
arXiv Detail & Related papers (2021-02-22T16:05:32Z) - BUSTLE: Bottom-Up Program Synthesis Through Learning-Guided Exploration [72.88493072196094]
We present a new synthesis approach that leverages learning to guide a bottom-up search over programs.
In particular, we train a model to prioritize compositions of intermediate values during search conditioned on a set of input-output examples.
We show that the combination of learning and bottom-up search is remarkably effective, even with simple supervised learning approaches.
arXiv Detail & Related papers (2020-07-28T17:46:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.