NOTABLE: Transferable Backdoor Attacks Against Prompt-based NLP Models
- URL: http://arxiv.org/abs/2305.17826v1
- Date: Sun, 28 May 2023 23:35:17 GMT
- Title: NOTABLE: Transferable Backdoor Attacks Against Prompt-based NLP Models
- Authors: Kai Mei, Zheng Li, Zhenting Wang, Yang Zhang, Shiqing Ma
- Abstract summary: Prompt-based learning is vulnerable to backdoor attacks.
We propose transferable backdoor attacks against prompt-based models, called NOTABLE.
Notable injects backdoors into the encoders of PLMs by utilizing an adaptiver to bind triggers to specific words.
- Score: 17.52386568785587
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prompt-based learning is vulnerable to backdoor attacks. Existing backdoor
attacks against prompt-based models consider injecting backdoors into the
entire embedding layers or word embedding vectors. Such attacks can be easily
affected by retraining on downstream tasks and with different prompting
strategies, limiting the transferability of backdoor attacks. In this work, we
propose transferable backdoor attacks against prompt-based models, called
NOTABLE, which is independent of downstream tasks and prompting strategies.
Specifically, NOTABLE injects backdoors into the encoders of PLMs by utilizing
an adaptive verbalizer to bind triggers to specific words (i.e., anchors). It
activates the backdoor by pasting input with triggers to reach
adversary-desired anchors, achieving independence from downstream tasks and
prompting strategies. We conduct experiments on six NLP tasks, three popular
models, and three prompting strategies. Empirical results show that NOTABLE
achieves superior attack performance (i.e., attack success rate over 90% on all
the datasets), and outperforms two state-of-the-art baselines. Evaluations on
three defenses show the robustness of NOTABLE. Our code can be found at
https://github.com/RU-System-Software-and-Security/Notable.
Related papers
- Revisiting Backdoor Attacks against Large Vision-Language Models [76.42014292255944]
This paper empirically examines the generalizability of backdoor attacks during the instruction tuning of LVLMs.
We modify existing backdoor attacks based on the above key observations.
This paper underscores that even simple traditional backdoor strategies pose a serious threat to LVLMs.
arXiv Detail & Related papers (2024-06-27T02:31:03Z) - Kallima: A Clean-label Framework for Textual Backdoor Attacks [25.332731545200808]
We propose the first clean-label framework Kallima for synthesizing mimesis-style backdoor samples.
We modify inputs belonging to the target class with adversarial perturbations, making the model rely more on the backdoor trigger.
arXiv Detail & Related papers (2022-06-03T21:44:43Z) - BITE: Textual Backdoor Attacks with Iterative Trigger Injection [24.76186072273438]
Backdoor attacks have become an emerging threat to NLP systems.
By providing poisoned training data, the adversary can embed a "backdoor" into the victim model.
We propose BITE, a backdoor attack that poisons the training data to establish strong correlations between the target label and a set of "trigger words"
arXiv Detail & Related papers (2022-05-25T11:58:38Z) - Textual Backdoor Attacks Can Be More Harmful via Two Simple Tricks [58.0225587881455]
In this paper, we find two simple tricks that can make existing textual backdoor attacks much more harmful.
The first trick is to add an extra training task to distinguish poisoned and clean data during the training of the victim model.
The second one is to use all the clean training data rather than remove the original clean data corresponding to the poisoned data.
arXiv Detail & Related papers (2021-10-15T17:58:46Z) - Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text
Style Transfer [49.67011295450601]
We make the first attempt to conduct adversarial and backdoor attacks based on text style transfer.
Experimental results show that popular NLP models are vulnerable to both adversarial and backdoor attacks based on text style transfer.
arXiv Detail & Related papers (2021-10-14T03:54:16Z) - Turn the Combination Lock: Learnable Textual Backdoor Attacks via Word
Substitution [57.51117978504175]
Recent studies show that neural natural language processing (NLP) models are vulnerable to backdoor attacks.
Injected with backdoors, models perform normally on benign examples but produce attacker-specified predictions when the backdoor is activated.
We present invisible backdoors that are activated by a learnable combination of word substitution.
arXiv Detail & Related papers (2021-06-11T13:03:17Z) - Hidden Killer: Invisible Textual Backdoor Attacks with Syntactic Trigger [48.59965356276387]
We propose to use syntactic structure as the trigger in textual backdoor attacks.
We conduct extensive experiments to demonstrate that the trigger-based attack method can achieve comparable attack performance.
These results also reveal the significant insidiousness and harmfulness of textual backdoor attacks.
arXiv Detail & Related papers (2021-05-26T08:54:19Z) - ONION: A Simple and Effective Defense Against Textual Backdoor Attacks [91.83014758036575]
Backdoor attacks are a kind of emergent training-time threat to deep neural networks (DNNs)
In this paper, we propose a simple and effective textual backdoor defense named ONION.
Experiments demonstrate the effectiveness of our model in defending BiLSTM and BERT against five different backdoor attacks.
arXiv Detail & Related papers (2020-11-20T12:17:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.