Vec2Gloss: definition modeling leveraging contextualized vectors with
Wordnet gloss
- URL: http://arxiv.org/abs/2305.17855v1
- Date: Mon, 29 May 2023 02:37:37 GMT
- Title: Vec2Gloss: definition modeling leveraging contextualized vectors with
Wordnet gloss
- Authors: Yu-Hsiang Tseng, Mao-Chang Ku, Wei-Ling Chen, Yu-Lin Chang, Shu-Kai
Hsieh
- Abstract summary: We propose a Vec2Gloss' model, which produces the gloss from the target word's contextualized embeddings.
The generated glosses of this study are made possible by the systematic gloss patterns provided by Chinese Wordnet.
Our results indicate that the proposed Vec2Gloss' model opens a new perspective to the lexical-semantic applications of contextualized embeddings.
- Score: 8.741676279851728
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contextualized embeddings are proven to be powerful tools in multiple NLP
tasks. Nonetheless, challenges regarding their interpretability and capability
to represent lexical semantics still remain. In this paper, we propose that the
task of definition modeling, which aims to generate the human-readable
definition of the word, provides a route to evaluate or understand the high
dimensional semantic vectors. We propose a `Vec2Gloss' model, which produces
the gloss from the target word's contextualized embeddings. The generated
glosses of this study are made possible by the systematic gloss patterns
provided by Chinese Wordnet. We devise two dependency indices to measure the
semantic and contextual dependency, which are used to analyze the generated
texts in gloss and token levels. Our results indicate that the proposed
`Vec2Gloss' model opens a new perspective to the lexical-semantic applications
of contextualized embeddings.
Related papers
- Disentangling Dense Embeddings with Sparse Autoencoders [0.0]
Sparse autoencoders (SAEs) have shown promise in extracting interpretable features from complex neural networks.
We present one of the first applications of SAEs to dense text embeddings from large language models.
We show that the resulting sparse representations maintain semantic fidelity while offering interpretability.
arXiv Detail & Related papers (2024-08-01T15:46:22Z) - Fantastic Semantics and Where to Find Them: Investigating Which Layers of Generative LLMs Reflect Lexical Semantics [50.982315553104975]
We investigate the bottom-up evolution of lexical semantics for a popular large language model, namely Llama2.
Our experiments show that the representations in lower layers encode lexical semantics, while the higher layers, with weaker semantic induction, are responsible for prediction.
This is in contrast to models with discriminative objectives, such as mask language modeling, where the higher layers obtain better lexical semantics.
arXiv Detail & Related papers (2024-03-03T13:14:47Z) - Unifying Latent and Lexicon Representations for Effective Video-Text
Retrieval [87.69394953339238]
We propose the UNIFY framework, which learns lexicon representations to capture fine-grained semantics in video-text retrieval.
We show our framework largely outperforms previous video-text retrieval methods, with 4.8% and 8.2% Recall@1 improvement on MSR-VTT and DiDeMo respectively.
arXiv Detail & Related papers (2024-02-26T17:36:50Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
The ability of text embedding models to generalize across a wide range of syntactic contexts remains under-explored.
Our findings reveal that existing text embedding models have not sufficiently addressed these syntactic understanding challenges.
We propose strategies to augment the generalization ability of text embedding models in diverse syntactic scenarios.
arXiv Detail & Related papers (2023-11-14T08:51:00Z) - "Definition Modeling: To model definitions." Generating Definitions With
Little to No Semantics [0.4061135251278187]
We present evidence that the task may not involve as much semantics as one might expect.
We show how an earlier model from the literature is both rather insensitive to semantic aspects such as explicit polysemy.
arXiv Detail & Related papers (2023-06-14T11:08:38Z) - Learnable Visual Words for Interpretable Image Recognition [70.85686267987744]
We propose the Learnable Visual Words (LVW) to interpret the model prediction behaviors with two novel modules.
The semantic visual words learning relaxes the category-specific constraint, enabling the general visual words shared across different categories.
Our experiments on six visual benchmarks demonstrate the superior effectiveness of our proposed LVW in both accuracy and model interpretation.
arXiv Detail & Related papers (2022-05-22T03:24:45Z) - Augmenting semantic lexicons using word embeddings and transfer learning [1.101002667958165]
We propose two models for predicting sentiment scores to augment semantic lexicons at a relatively low cost using word embeddings and transfer learning.
Our evaluation shows both models are able to score new words with a similar accuracy to reviewers from Amazon Mechanical Turk, but at a fraction of the cost.
arXiv Detail & Related papers (2021-09-18T20:59:52Z) - Deriving Word Vectors from Contextualized Language Models using
Topic-Aware Mention Selection [46.97185212695267]
We propose a method for learning word representations that follows this basic strategy.
We take advantage of contextualized language models (CLMs) rather than bags of word vectors to encode contexts.
We show that this simple strategy leads to high-quality word vectors, which are more predictive of semantic properties than word embeddings and existing CLM-based strategies.
arXiv Detail & Related papers (2021-06-15T08:02:42Z) - Infusing Finetuning with Semantic Dependencies [62.37697048781823]
We show that, unlike syntax, semantics is not brought to the surface by today's pretrained models.
We then use convolutional graph encoders to explicitly incorporate semantic parses into task-specific finetuning.
arXiv Detail & Related papers (2020-12-10T01:27:24Z) - Unsupervised Distillation of Syntactic Information from Contextualized
Word Representations [62.230491683411536]
We tackle the task of unsupervised disentanglement between semantics and structure in neural language representations.
To this end, we automatically generate groups of sentences which are structurally similar but semantically different.
We demonstrate that our transformation clusters vectors in space by structural properties, rather than by lexical semantics.
arXiv Detail & Related papers (2020-10-11T15:13:18Z) - Distributional semantic modeling: a revised technique to train term/word
vector space models applying the ontology-related approach [36.248702416150124]
We design a new technique for the distributional semantic modeling with a neural network-based approach to learn distributed term representations (or term embeddings)
Vec2graph is a Python library for visualizing word embeddings (term embeddings in our case) as dynamic and interactive graphs.
arXiv Detail & Related papers (2020-03-06T18:27:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.