Intrinsic nonlinear thermal Hall transport of magnons: A Quantum kinetic
theory approach
- URL: http://arxiv.org/abs/2305.18127v2
- Date: Fri, 29 Sep 2023 06:09:14 GMT
- Title: Intrinsic nonlinear thermal Hall transport of magnons: A Quantum kinetic
theory approach
- Authors: Harsh Varshney, Rohit Mukherjee, Arijit Kundu, and Amit Agarwal
- Abstract summary: We demonstrate the existence of an intrinsic nonlinear boson thermal current, arising from the quantum metric.
In contrast to the nonlinear Drude and nonlinear anomalous Hall contributions, the intrinsic nonlinear thermal conductivity is independent of the scattering timescale.
Our findings highlight the significance of band geometry induced nonlinear thermal transport and motivate experimental probe of the intrinsic nonlinear thermal Hall response with implications for quantum magnonics.
- Score: 0.9843385481559191
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a systematic study of the nonlinear thermal Hall responses in
bosonic systems using the quantum kinetic theory framework. We demonstrate the
existence of an intrinsic nonlinear boson thermal current, arising from the
quantum metric which is a wavefunction dependent band geometric quantity. In
contrast to the nonlinear Drude and nonlinear anomalous Hall contributions, the
intrinsic nonlinear thermal conductivity is independent of the scattering
timescale. We demonstrate the dominance of this intrinsic thermal Hall response
in topological magnons in a two-dimensional ferromagnetic honeycomb lattice
without Dzyaloshinskii-Moriya interaction. Our findings highlight the
significance of band geometry induced nonlinear thermal transport and motivate
experimental probe of the intrinsic nonlinear thermal Hall response with
implications for quantum magnonics.
Related papers
- Intrinsic nonlinear Hall effect in two-dimensional honeycomb topological antiferromagnets [0.0]
In this work, we consider honeycomb topological antiferromagets that are effectively described by a $mathcalPT$-symmetric antiferromagnetic Kane-Mele model.
By varying the chemical potential, we find that the nonlinear Hall conductivity tensors exhibit kinks when the Fermi surface undergoes Lifshitz transitions.
Our work shows that the two-dimensional honeycomb topological antiferromagnets are an ideal class of material systems with rich properties for the study of intrinsic nonlinear Hall effect.
arXiv Detail & Related papers (2024-02-05T02:48:01Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Quantum kinetic theory of nonlinear thermal current [1.4174475093445236]
We develop the quantum kinetic theory framework to describe thermal transport in presence of a temperature gradient.
We show that the intrinsic thermal current is determined by the band geometric quantities and is non-zero in systems where both the space inversion and time-reversal symmetries are broken.
arXiv Detail & Related papers (2022-11-03T15:28:11Z) - On the Su-Schrieffer-Heeger model of electron transport: low-temperature
optical conductivity by the Mellin transform [62.997667081978825]
We describe the low-temperature optical conductivity as a function of frequency for a quantum-mechanical system of electrons that hop along a polymer chain.
Our goal is to show vias how the interband conductivity of this system behaves as the smallest energy bandgap tends to close.
arXiv Detail & Related papers (2022-09-26T23:17:39Z) - Thermal self-oscillations in monolayer graphene coupled to a
superconducting microwave cavity [58.720142291102135]
We observe thermal self-oscillations in a monolayer graphene flake coupled to superconducting resonator.
The experimental observations fit well with theoretical model based on thermal instability.
The modelling of the oscillation sidebands provides a method to evaluate electron phonon coupling in disordered graphene sample at low energies.
arXiv Detail & Related papers (2022-05-27T15:38:41Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Nonlinear Landauer formula: Nonlinear response theory of disordered and
topological materials [5.33024001730262]
We extend the Landauer formula to the nonlinear-response regime.
We show that while the linear conductance is directly related to the transmission probability, the nonlinear conductance is given by its derivatives with respect to energy.
Our work opens a new avenue in quantum physics beyond the linear-response regime.
arXiv Detail & Related papers (2021-10-15T18:25:26Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
static cavity nonlinearities typically limit the performance of bosonic quantum error-correcting codes.
Treating the nonlinearity as a perturbation, we derive effective Hamiltonians using the Schrieffer-Wolff transformation.
Results show that a cubic interaction allows to increase the effective rates of both linear and nonlinear operations.
arXiv Detail & Related papers (2021-07-14T15:11:05Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Quantum kinetics of anomalous and nonlinear Hall effects in topological
semimetals [0.0]
We present a systematic derivation of the semiclassical Boltzmann equation for band structures with the finite Berry curvature.
In particular, this formulation is suitable for the study of nonlinear Hall effect and photogalvanic phenomena.
arXiv Detail & Related papers (2021-02-10T19:00:02Z) - Nonequilibrium Nonlinear Open Quantum Systems I. Functional Perturbative
Analysis of a Weakly Anharmonic Oscillator [0.0]
We introduce a functional perturbative method for treating weakly nonlinear systems coupled with a quantum field bath.
We identify a fluctuation-dissipation relation based on the nonequilibrium dynamics of this nonlinear open quantum system.
The results presented here are useful for studying the nonequilibrium physical processes of nonlinear quantum systems such as heat transfer or electron transport.
arXiv Detail & Related papers (2019-12-30T03:50:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.