Alignment-free HDR Deghosting with Semantics Consistent Transformer
- URL: http://arxiv.org/abs/2305.18135v2
- Date: Thu, 28 Sep 2023 17:34:34 GMT
- Title: Alignment-free HDR Deghosting with Semantics Consistent Transformer
- Authors: Steven Tel, Zongwei Wu, Yulun Zhang, Barth\'el\'emy Heyrman, C\'edric
Demonceaux, Radu Timofte, Dominique Ginhac
- Abstract summary: High dynamic range imaging aims to retrieve information from multiple low-dynamic range inputs to generate realistic output.
Existing methods often focus on the spatial misalignment across input frames caused by the foreground and/or camera motion.
We propose a novel alignment-free network with a Semantics Consistent Transformer (SCTNet) with both spatial and channel attention modules.
- Score: 76.91669741684173
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High dynamic range (HDR) imaging aims to retrieve information from multiple
low-dynamic range inputs to generate realistic output. The essence is to
leverage the contextual information, including both dynamic and static
semantics, for better image generation. Existing methods often focus on the
spatial misalignment across input frames caused by the foreground and/or camera
motion. However, there is no research on jointly leveraging the dynamic and
static context in a simultaneous manner. To delve into this problem, we propose
a novel alignment-free network with a Semantics Consistent Transformer (SCTNet)
with both spatial and channel attention modules in the network. The spatial
attention aims to deal with the intra-image correlation to model the dynamic
motion, while the channel attention enables the inter-image intertwining to
enhance the semantic consistency across frames. Aside from this, we introduce a
novel realistic HDR dataset with more variations in foreground objects,
environmental factors, and larger motions. Extensive comparisons on both
conventional datasets and ours validate the effectiveness of our method,
achieving the best trade-off on the performance and the computational cost.
Related papers
- DATAP-SfM: Dynamic-Aware Tracking Any Point for Robust Structure from Motion in the Wild [85.03973683867797]
This paper proposes a concise, elegant, and robust pipeline to estimate smooth camera trajectories and obtain dense point clouds for casual videos in the wild.
We show that the proposed method achieves state-of-the-art performance in terms of camera pose estimation even in complex dynamic challenge scenes.
arXiv Detail & Related papers (2024-11-20T13:01:16Z) - Motion-aware Latent Diffusion Models for Video Frame Interpolation [51.78737270917301]
Motion estimation between neighboring frames plays a crucial role in avoiding motion ambiguity.
We propose a novel diffusion framework, motion-aware latent diffusion models (MADiff)
Our method achieves state-of-the-art performance significantly outperforming existing approaches.
arXiv Detail & Related papers (2024-04-21T05:09:56Z) - DyBluRF: Dynamic Neural Radiance Fields from Blurry Monocular Video [18.424138608823267]
We propose DyBluRF, a dynamic radiance field approach that synthesizes sharp novel views from a monocular video affected by motion blur.
To account for motion blur in input images, we simultaneously capture the camera trajectory and object Discrete Cosine Transform (DCT) trajectories within the scene.
arXiv Detail & Related papers (2024-03-15T08:48:37Z) - DynaMoN: Motion-Aware Fast and Robust Camera Localization for Dynamic Neural Radiance Fields [71.94156412354054]
We propose Dynamic Motion-Aware Fast and Robust Camera Localization for Dynamic Neural Radiance Fields (DynaMoN)
DynaMoN handles dynamic content for initial camera pose estimation and statics-focused ray sampling for fast and accurate novel-view synthesis.
We extensively evaluate our approach on two real-world dynamic datasets, the TUM RGB-D dataset and the BONN RGB-D Dynamic dataset.
arXiv Detail & Related papers (2023-09-16T08:46:59Z) - Self-Supervised Scene Dynamic Recovery from Rolling Shutter Images and
Events [63.984927609545856]
Event-based Inter/intra-frame Compensator (E-IC) is proposed to predict the per-pixel dynamic between arbitrary time intervals.
We show that the proposed method achieves state-of-the-art and shows remarkable performance for event-based RS2GS inversion in real-world scenarios.
arXiv Detail & Related papers (2023-04-14T05:30:02Z) - Ghost-free High Dynamic Range Imaging via Hybrid CNN-Transformer and
Structure Tensor [12.167049432063132]
We present a hybrid model consisting of a convolutional encoder and a Transformer decoder to generate ghost-free HDR images.
In the encoder, a context aggregation network and non-local attention block are adopted to optimize multi-scale features.
The decoder based on Swin Transformer is utilized to improve the reconstruction capability of the proposed model.
arXiv Detail & Related papers (2022-12-01T15:43:32Z) - DynaST: Dynamic Sparse Transformer for Exemplar-Guided Image Generation [56.514462874501675]
We propose a dynamic sparse attention based Transformer model to achieve fine-level matching with favorable efficiency.
The heart of our approach is a novel dynamic-attention unit, dedicated to covering the variation on the optimal number of tokens one position should focus on.
Experiments on three applications, pose-guided person image generation, edge-based face synthesis, and undistorted image style transfer, demonstrate that DynaST achieves superior performance in local details.
arXiv Detail & Related papers (2022-07-13T11:12:03Z) - Motion-aware Dynamic Graph Neural Network for Video Compressive Sensing [14.67994875448175]
Video snapshot imaging (SCI) utilizes a 2D detector to capture sequential video frames and compress them into a single measurement.
Most existing reconstruction methods are incapable of efficiently capturing long-range spatial and temporal dependencies.
We propose a flexible and robust approach based on the graph neural network (GNN) to efficiently model non-local interactions between pixels in space and time regardless of the distance.
arXiv Detail & Related papers (2022-03-01T12:13:46Z) - FlowFusion: Dynamic Dense RGB-D SLAM Based on Optical Flow [17.040818114071833]
We present a novel dense RGB-D SLAM solution that simultaneously accomplishes the dynamic/static segmentation and camera ego-motion estimation.
Our novelty is using optical flow residuals to highlight the dynamic semantics in the RGB-D point clouds.
arXiv Detail & Related papers (2020-03-11T04:00:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.