Contextual Object Detection with Multimodal Large Language Models
- URL: http://arxiv.org/abs/2305.18279v2
- Date: Mon, 12 Aug 2024 07:14:00 GMT
- Title: Contextual Object Detection with Multimodal Large Language Models
- Authors: Yuhang Zang, Wei Li, Jun Han, Kaiyang Zhou, Chen Change Loy,
- Abstract summary: We introduce a novel research problem of contextual object detection.
Three representative scenarios are investigated, including the language cloze test, visual captioning, and question answering.
We present ContextDET, a unified multimodal model that is capable of end-to-end differentiable modeling of visual-language contexts.
- Score: 66.15566719178327
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent Multimodal Large Language Models (MLLMs) are remarkable in vision-language tasks, such as image captioning and question answering, but lack the essential perception ability, i.e., object detection. In this work, we address this limitation by introducing a novel research problem of contextual object detection -- understanding visible objects within different human-AI interactive contexts. Three representative scenarios are investigated, including the language cloze test, visual captioning, and question answering. Moreover, we present ContextDET, a unified multimodal model that is capable of end-to-end differentiable modeling of visual-language contexts, so as to locate, identify, and associate visual objects with language inputs for human-AI interaction. Our ContextDET involves three key submodels: (i) a visual encoder for extracting visual representations, (ii) a pre-trained LLM for multimodal context decoding, and (iii) a visual decoder for predicting bounding boxes given contextual object words. The new generate-then-detect framework enables us to detect object words within human vocabulary. Extensive experiments show the advantages of ContextDET on our proposed CODE benchmark, open-vocabulary detection, and referring image segmentation. Github: https://github.com/yuhangzang/ContextDET.
Related papers
- More Pictures Say More: Visual Intersection Network for Open Set Object Detection [4.206612461069489]
We introduce a strong DETR-based model, Visual Intersection Network for Open Set Object Detection (VINO)
VINO constructs a multi-image visual bank to preserve the semantic intersections of each category across all time steps.
Our approach guarantees a more precise alignment between target category semantics and region semantics, while significantly reducing pre-training time and resource demands.
arXiv Detail & Related papers (2024-08-26T05:52:35Z) - Lyrics: Boosting Fine-grained Language-Vision Alignment and Comprehension via Semantic-aware Visual Objects [11.117055725415446]
Large Vision Language Models (LVLMs) have demonstrated impressive zero-shot capabilities in various vision-language dialogue scenarios.
The absence of fine-grained visual object detection hinders the model from understanding the details of images, leading to irreparable visual hallucinations and factual errors.
We propose Lyrics, a novel multi-modal pre-training and instruction fine-tuning paradigm that bootstraps vision-language alignment from fine-grained cross-modal collaboration.
arXiv Detail & Related papers (2023-12-08T09:02:45Z) - Exploring Multi-Modal Contextual Knowledge for Open-Vocabulary Object
Detection [72.36017150922504]
We propose a multi-modal contextual knowledge distillation framework, MMC-Det, to transfer the learned contextual knowledge from a teacher fusion transformer to a student detector.
The diverse multi-modal masked language modeling is realized by an object divergence constraint upon traditional multi-modal masked language modeling (MLM)
arXiv Detail & Related papers (2023-08-30T08:33:13Z) - Multi-Modal Classifiers for Open-Vocabulary Object Detection [104.77331131447541]
The goal of this paper is open-vocabulary object detection (OVOD)
We adopt a standard two-stage object detector architecture.
We explore three ways via: language descriptions, image exemplars, or a combination of the two.
arXiv Detail & Related papers (2023-06-08T18:31:56Z) - Learning Object-Language Alignments for Open-Vocabulary Object Detection [83.09560814244524]
We propose a novel open-vocabulary object detection framework directly learning from image-text pair data.
It enables us to train an open-vocabulary object detector on image-text pairs in a much simple and effective way.
arXiv Detail & Related papers (2022-11-27T14:47:31Z) - Beyond Bounding Box: Multimodal Knowledge Learning for Object Detection [3.785123406103386]
We take advantage of language prompt to introduce effective and unbiased linguistic supervision into object detection.
We propose a new mechanism called multimodal knowledge learning (textbfMKL), which is required to learn knowledge from language supervision.
arXiv Detail & Related papers (2022-05-09T07:03:30Z) - Vision-Language Pre-Training for Boosting Scene Text Detectors [57.08046351495244]
We specifically adapt vision-language joint learning for scene text detection.
We propose to learn contextualized, joint representations through vision-language pre-training.
The pre-trained model is able to produce more informative representations with richer semantics.
arXiv Detail & Related papers (2022-04-29T03:53:54Z) - Multi-modal Transformers Excel at Class-agnostic Object Detection [105.10403103027306]
We argue that existing methods lack a top-down supervision signal governed by human-understandable semantics.
We develop an efficient and flexible MViT architecture using multi-scale feature processing and deformable self-attention.
We show the significance of MViT proposals in a diverse range of applications.
arXiv Detail & Related papers (2021-11-22T18:59:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.