Using VGG16 Algorithms for classification of lung cancer in CT scans
Image
- URL: http://arxiv.org/abs/2305.18367v1
- Date: Sat, 27 May 2023 18:50:12 GMT
- Title: Using VGG16 Algorithms for classification of lung cancer in CT scans
Image
- Authors: Hasan Hejbari Zargar, Saha Hejbari Zargar, Raziye Mehri, Farzane
Tajidini
- Abstract summary: A deep learning algorithm called the VGG16 was developed to help medical professionals diagnose and classify carcinoma nodules.
VGG16 can classify medical images of carcinoma in malignant, benign, and healthy patients.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lung cancer is the leading reason behind cancer-related deaths within the
world. Early detection of lung nodules is vital for increasing the survival
rate of cancer patients. Traditionally, physicians should manually identify the
world suspected of getting carcinoma. When developing these detection systems,
the arbitrariness of lung nodules' shape, size, and texture could be a
challenge. Many studies showed the applied of computer vision algorithms to
accurate diagnosis and classification of lung nodules. A deep learning
algorithm called the VGG16 was developed during this paper to help medical
professionals diagnose and classify carcinoma nodules. VGG16 can classify
medical images of carcinoma in malignant, benign, and healthy patients. This
paper showed that nodule detection using this single neural network had 92.08%
sensitivity, 91% accuracy, and an AUC of 93%.
Related papers
- Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Double Integral Enhanced Zeroing Neural Network Optimized with ALSOA
fostered Lung Cancer Classification using CT Images [1.1510009152620668]
Lung cancer is one of the deadliest diseases and the leading cause of illness and death.
The proposed method attains 18.32%, 27.20%, and 34.32% higher accuracy analyzed with existing method.
arXiv Detail & Related papers (2023-12-05T10:53:35Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
The prevalence of breast cancer continues to grow, affecting about 300,000 females in the United States in 2023.
The gold-standard Scarff-Bloom-Richardson (SBR) grade has been shown to consistently indicate a patient's response to chemotherapy.
In this paper, we study the efficacy of deep learning for breast cancer grading based on synthetic correlated diffusion (CDI$s$) imaging.
arXiv Detail & Related papers (2023-04-12T15:08:34Z) - A Multi-Institutional Open-Source Benchmark Dataset for Breast Cancer
Clinical Decision Support using Synthetic Correlated Diffusion Imaging Data [82.74877848011798]
Cancer-Net BCa is a multi-institutional open-source benchmark dataset of volumetric CDI$s$ imaging data of breast cancer patients.
Cancer-Net BCa is publicly available as a part of a global open-source initiative dedicated to accelerating advancement in machine learning to aid clinicians in the fight against cancer.
arXiv Detail & Related papers (2023-04-12T05:41:44Z) - Artificial intelligence based prediction on lung cancer risk factors
using deep learning [0.0]
Capturing and defining symptoms at an early stage is one of the most difficult phases for patients.
We developed a model that can detect lung cancer with a remarkably high level of accuracy using the deep learning approach.
We found that our model achieved an accuracy of 94% and a minimum loss of 0.1%.
arXiv Detail & Related papers (2023-04-11T08:57:15Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Classification of Histopathology Images of Lung Cancer Using
Convolutional Neural Network (CNN) [0.2578242050187029]
Cancer is the uncontrollable cell division of abnormal cells inside the human body, which can spread to other body organs.
It is one of the non-communicable diseases (NCDs) and NCDs accounts for 71% of total deaths worldwide.
Lung cancer is the second most diagnosed cancer after female breast cancer. Cancer survival rate of lung cancer is only 19%.
arXiv Detail & Related papers (2021-12-27T07:43:58Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Automatic Generation of Interpretable Lung Cancer Scoring Models from
Chest X-Ray Images [9.525711971667679]
Lung cancer is the leading cause of cancer death worldwide.
Deep learning techniques are effective at automatically diagnosing lung cancer.
These techniques have yet to be clinically approved and adopted by the medical community.
arXiv Detail & Related papers (2020-12-10T04:11:59Z) - 3D Neural Network for Lung Cancer Risk Prediction on CT Volumes [0.6810862244331126]
Lung cancer is the most common cause of cancer death in the United States.
Lung cancer CT screening has been shown to reduce mortality by up to 40% and is now included in US screening guidelines.
Despite the use of standards for radiological diagnosis, persistent inter-grader variability and incomplete characterization of comprehensive imaging findings remain as limitations of current methods.
In this report, we reproduce a state-of-the-art deep learning algorithm for lung cancer risk prediction.
arXiv Detail & Related papers (2020-07-25T10:01:22Z) - Segmentation for Classification of Screening Pancreatic Neuroendocrine
Tumors [72.65802386845002]
This work presents comprehensive results to detect in the early stage the pancreatic neuroendocrine tumors (PNETs) in abdominal CT scans.
To the best of our knowledge, this task has not been studied before as a computational task.
Our approach outperforms state-of-the-art segmentation networks and achieves a sensitivity of $89.47%$ at a specificity of $81.08%$.
arXiv Detail & Related papers (2020-04-04T21:21:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.