AnoRand: A Semi Supervised Deep Learning Anomaly Detection Method by
Random Labeling
- URL: http://arxiv.org/abs/2305.18389v1
- Date: Sun, 28 May 2023 10:53:34 GMT
- Title: AnoRand: A Semi Supervised Deep Learning Anomaly Detection Method by
Random Labeling
- Authors: Mansour Zoubeirou A Mayaki and Michel Riveill
- Abstract summary: Anomaly detection or more generally outliers detection is one of the most popular and challenging subject in theoretical and applied machine learning.
We present a new semi-supervised anomaly detection method called textbfAnoRand by combining a deep learning architecture with random synthetic label generation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection or more generally outliers detection is one of the most
popular and challenging subject in theoretical and applied machine learning.
The main challenge is that in general we have access to very few labeled data
or no labels at all. In this paper, we present a new semi-supervised anomaly
detection method called \textbf{AnoRand} by combining a deep learning
architecture with random synthetic label generation. The proposed architecture
has two building blocks: (1) a noise detection (ND) block composed of feed
forward ferceptron and (2) an autoencoder (AE) block. The main idea of this new
architecture is to learn one class (e.g. the majority class in case of anomaly
detection) as well as possible by taking advantage of the ability of auto
encoders to represent data in a latent space and the ability of Feed Forward
Perceptron (FFP) to learn one class when the data is highly imbalanced. First,
we create synthetic anomalies by randomly disturbing (add noise) few samples
(e.g. 2\%) from the training set. Second, we use the normal and the synthetic
samples as input to our model. We compared the performance of the proposed
method to 17 state-of-the-art unsupervised anomaly detection method on
synthetic datasets and 57 real-world datasets. Our results show that this new
method generally outperforms most of the state-of-the-art methods and has the
best performance (AUC ROC and AUC PR) on the vast majority of reference
datasets. We also tested our method in a supervised way by using the actual
labels to train the model. The results show that it has very good performance
compared to most of state-of-the-art supervised algorithms.
Related papers
- FUN-AD: Fully Unsupervised Learning for Anomaly Detection with Noisy Training Data [1.0650780147044159]
We propose a novel learning-based approach for fully unsupervised anomaly detection with unlabeled and potentially contaminated training data.
Our method is motivated by two observations, that i) the pairwise feature distances between the normal samples are on average likely to be smaller than those between the anomaly samples or heterogeneous samples and ii) pairs of features mutually closest to each other are likely to be homogeneous pairs.
Building on the first observation that nearest-neighbor distances can distinguish between confident normal samples and anomalies, we propose a pseudo-labeling strategy using an iteratively reconstructed memory bank.
arXiv Detail & Related papers (2024-11-25T05:51:38Z) - SoftPatch: Unsupervised Anomaly Detection with Noisy Data [67.38948127630644]
This paper considers label-level noise in image sensory anomaly detection for the first time.
We propose a memory-based unsupervised AD method, SoftPatch, which efficiently denoises the data at the patch level.
Compared with existing methods, SoftPatch maintains a strong modeling ability of normal data and alleviates the overconfidence problem in coreset.
arXiv Detail & Related papers (2024-03-21T08:49:34Z) - ROG$_{PL}$: Robust Open-Set Graph Learning via Region-Based Prototype
Learning [52.60434474638983]
We propose a unified framework named ROG$_PL$ to achieve robust open-set learning on complex noisy graph data.
The framework consists of two modules, i.e., denoising via label propagation and open-set prototype learning via regions.
To the best of our knowledge, the proposed ROG$_PL$ is the first robust open-set node classification method for graph data with complex noise.
arXiv Detail & Related papers (2024-02-28T17:25:06Z) - CL-Flow:Strengthening the Normalizing Flows by Contrastive Learning for
Better Anomaly Detection [1.951082473090397]
We propose a self-supervised anomaly detection approach that combines contrastive learning with 2D-Flow.
Compared to mainstream unsupervised approaches, our self-supervised method demonstrates superior detection accuracy, fewer additional model parameters, and faster inference speed.
Our approach showcases new state-of-the-art results, achieving a performance of 99.6% in image-level AUROC on the MVTecAD dataset and 96.8% in image-level AUROC on the BTAD dataset.
arXiv Detail & Related papers (2023-11-12T10:07:03Z) - A Discrepancy Aware Framework for Robust Anomaly Detection [51.710249807397695]
We present a Discrepancy Aware Framework (DAF), which demonstrates robust performance consistently with simple and cheap strategies.
Our method leverages an appearance-agnostic cue to guide the decoder in identifying defects, thereby alleviating its reliance on synthetic appearance.
Under the simple synthesis strategies, it outperforms existing methods by a large margin. Furthermore, it also achieves the state-of-the-art localization performance.
arXiv Detail & Related papers (2023-10-11T15:21:40Z) - Learning with Neighbor Consistency for Noisy Labels [69.83857578836769]
We present a method for learning from noisy labels that leverages similarities between training examples in feature space.
We evaluate our method on datasets evaluating both synthetic (CIFAR-10, CIFAR-100) and realistic (mini-WebVision, Clothing1M, mini-ImageNet-Red) noise.
arXiv Detail & Related papers (2022-02-04T15:46:27Z) - A Novel Resampling Technique for Imbalanced Dataset Optimization [1.0323063834827415]
classification of rare events is a common problem in many domains, such as fraudulent transactions, malware traffic analysis and network intrusion detection.
We develop two versions of Generative Silhouette Resampling 1-Nearest Neighbour (G1Nos) oversampling algorithms for dealing with class imbalance problem.
arXiv Detail & Related papers (2020-12-30T17:17:08Z) - MOCCA: Multi-Layer One-Class ClassificAtion for Anomaly Detection [16.914663209964697]
We propose our deep learning approach to the anomaly detection problem named Multi-LayerOne-Class Classification (MOCCA)
We explicitly leverage the piece-wise nature of deep neural networks by exploiting information extracted at different depths to detect abnormal data instances.
We show that our method reaches superior performances compared to the state-of-the-art approaches available in the literature.
arXiv Detail & Related papers (2020-12-09T08:32:56Z) - Self-Attentive Classification-Based Anomaly Detection in Unstructured
Logs [59.04636530383049]
We propose Logsy, a classification-based method to learn log representations.
We show an average improvement of 0.25 in the F1 score, compared to the previous methods.
arXiv Detail & Related papers (2020-08-21T07:26:55Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.