A machine learning approach to the prediction of heat-transfer
coefficients in micro-channels
- URL: http://arxiv.org/abs/2305.18406v1
- Date: Sun, 28 May 2023 15:48:01 GMT
- Title: A machine learning approach to the prediction of heat-transfer
coefficients in micro-channels
- Authors: Tullio Traverso, Francesco Coletti, Luca Magri, Tassos G. Karayiannis,
Omar K. Matar
- Abstract summary: The accurate prediction of the two-phase heat transfer coefficient (HTC) is key to the optimal design and operation of compact heat exchangers.
We use a multi-output Gaussian process regression (GPR) to estimate the HTC in microchannels as a function of the mass flow rate, heat flux, system pressure and channel diameter and length.
- Score: 4.724825031148412
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The accurate prediction of the two-phase heat transfer coefficient (HTC) as a
function of working fluids, channel geometries and process conditions is key to
the optimal design and operation of compact heat exchangers. Advances in
artificial intelligence research have recently boosted the application of
machine learning (ML) algorithms to obtain data-driven surrogate models for the
HTC. For most supervised learning algorithms, the task is that of a nonlinear
regression problem. Despite the fact that these models have been proven capable
of outperforming traditional empirical correlations, they have key limitations
such as overfitting the data, the lack of uncertainty estimation, and
interpretability of the results. To address these limitations, in this paper,
we use a multi-output Gaussian process regression (GPR) to estimate the HTC in
microchannels as a function of the mass flow rate, heat flux, system pressure
and channel diameter and length. The model is trained using the Brunel
Two-Phase Flow database of high-fidelity experimental data. The advantages of
GPR are data efficiency, the small number of hyperparameters to be trained
(typically of the same order of the number of input dimensions), and the
automatic trade-off between data fit and model complexity guaranteed by the
maximization of the marginal likelihood (Bayesian approach). Our paper proposes
research directions to improve the performance of the GPR-based model in
extrapolation.
Related papers
- Computation-Aware Gaussian Processes: Model Selection And Linear-Time Inference [55.150117654242706]
We show that model selection for computation-aware GPs trained on 1.8 million data points can be done within a few hours on a single GPU.
As a result of this work, Gaussian processes can be trained on large-scale datasets without significantly compromising their ability to quantify uncertainty.
arXiv Detail & Related papers (2024-11-01T21:11:48Z) - An Investigation on Machine Learning Predictive Accuracy Improvement and Uncertainty Reduction using VAE-based Data Augmentation [2.517043342442487]
Deep generative learning uses certain ML models to learn the underlying distribution of existing data and generate synthetic samples that resemble the real data.
In this study, our objective is to evaluate the effectiveness of data augmentation using variational autoencoder (VAE)-based deep generative models.
We investigated whether the data augmentation leads to improved accuracy in the predictions of a deep neural network (DNN) model trained using the augmented data.
arXiv Detail & Related papers (2024-10-24T18:15:48Z) - Physically Guided Deep Unsupervised Inversion for 1D Magnetotelluric Models [16.91835461818938]
We present a new deep inversion algorithm guided by physics to estimate 1D Magnetotelluric (MT) models.
Our method employs a differentiable modeling operator that physically guides the cost function minimization.
We test the proposed method with field and synthetic data at different frequencies, demonstrating that the acquisition models are more accurate than other results.
arXiv Detail & Related papers (2024-10-20T04:17:59Z) - Value function estimation using conditional diffusion models for control [62.27184818047923]
We propose a simple algorithm called Diffused Value Function (DVF)
It learns a joint multi-step model of the environment-robot interaction dynamics using a diffusion model.
We show how DVF can be used to efficiently capture the state visitation measure for multiple controllers.
arXiv Detail & Related papers (2023-06-09T18:40:55Z) - Winner-Take-All Column Row Sampling for Memory Efficient Adaptation of Language Model [89.8764435351222]
We propose a new family of unbiased estimators called WTA-CRS, for matrix production with reduced variance.
Our work provides both theoretical and experimental evidence that, in the context of tuning transformers, our proposed estimators exhibit lower variance compared to existing ones.
arXiv Detail & Related papers (2023-05-24T15:52:08Z) - Multi-fidelity surrogate modeling for temperature field prediction using
deep convolution neural network [8.98674326282801]
This paper proposes a pithy deep multi-fidelity model (DMFM) for temperature field prediction.
It takes advantage of low-fidelity data to boost the performance with less high-fidelity data.
A self-supervised learning method for training the physics-driven deep multi-fidelity model (PD-DMFM) is proposed.
arXiv Detail & Related papers (2023-01-17T03:13:45Z) - Directed Acyclic Graph Factorization Machines for CTR Prediction via
Knowledge Distillation [65.62538699160085]
We propose a Directed Acyclic Graph Factorization Machine (KD-DAGFM) to learn the high-order feature interactions from existing complex interaction models for CTR prediction via Knowledge Distillation.
KD-DAGFM achieves the best performance with less than 21.5% FLOPs of the state-of-the-art method on both online and offline experiments.
arXiv Detail & Related papers (2022-11-21T03:09:42Z) - Hybrid full-field thermal characterization of additive manufacturing
processes using physics-informed neural networks with data [5.653328302363391]
We develop a hybrid physics-based data-driven thermal modeling approach of AM processes using physics-informed neural networks.
Partially observed temperature data measured from an infrared camera is combined with the physics laws to predict full-field temperature history.
Results show that the hybrid thermal model can effectively identify unknown parameters and capture the full-field temperature accurately.
arXiv Detail & Related papers (2022-06-15T18:27:10Z) - A hybrid data driven-physics constrained Gaussian process regression
framework with deep kernel for uncertainty quantification [21.972192114861873]
We propose a hybrid data driven-physics constrained Gaussian process regression framework.
We encode the physics knowledge with Boltzmann-Gibbs distribution and derive our model through maximum likelihood (ML) approach.
The proposed model achieves good results in high-dimensional problem, and correctly propagate the uncertainty, with very limited labelled data provided.
arXiv Detail & Related papers (2022-05-13T07:53:49Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - A Hypergradient Approach to Robust Regression without Correspondence [85.49775273716503]
We consider a variant of regression problem, where the correspondence between input and output data is not available.
Most existing methods are only applicable when the sample size is small.
We propose a new computational framework -- ROBOT -- for the shuffled regression problem.
arXiv Detail & Related papers (2020-11-30T21:47:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.