Mirror-mediated ultralong-range atomic dipole-dipole interactions
- URL: http://arxiv.org/abs/2305.18826v3
- Date: Thu, 27 Jun 2024 08:23:34 GMT
- Title: Mirror-mediated ultralong-range atomic dipole-dipole interactions
- Authors: Nicholas Furtak-Wells, Benjamin Dawson, Thomas Mann, Gin Jose, Almut Beige,
- Abstract summary: We show that it is possible to significantly extend the range of dipole-dipole interactions with the help of a partially transparent asymmetric mirror interface.
Although the resulting ultralong-range interactions are in general relatively weak, we expect them to find applications in quantum technology.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In three dimensions, dipole-dipole interactions which alter atomic level shifts and spontaneous decay rates only persist over distances comparable to the wavelength of the emitted light. In this paper we show that it is possible to significantly extend the range of these interactions with the help of a partially transparent asymmetric mirror interface. Suppose two two-level atoms are placed on opposite sides of the interface, each at the position of the mirror image of the other. In this case, their emitted light interferes almost exactly as it would when the atoms are right next to each other. Hence their dipole-dipole interaction assumes an additional maximum, even when the actual distance of the atoms is several orders of magnitude larger than the transition wavelength. Although the resulting ultralong-range interactions are in general relatively weak, we expect them to find applications in quantum technology, like non-invasive quantum sensing.
Related papers
- Dispersive interaction between two atoms in Proca Quantum Electrodynamics [0.0]
We analyze the influence of a massive photon in the dispersive interaction between two atoms in their fundamental states.
The photon mass not only introduces a new length scale but also gives rise to a longitudinal polarization for the electromagnetic field.
arXiv Detail & Related papers (2024-06-11T00:32:24Z) - Coherent Control of Spontaneous Emission for a giant driven $Λ $-type three-level atom [1.9976998521795732]
Quantum optics with giant atoms provides a new approach for implementing optical memory devices at the atomic scale.
We study the relaxation dynamics of a single driven three-level atom interacting with a one-dimensional waveguide.
arXiv Detail & Related papers (2024-05-30T11:03:08Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Interaction between giant atoms in a one-dimensional structured
environment [0.0]
We study the interaction between two giant atoms mediated by a structured waveguide.
We show decoherence-free interaction is possible for different atom-cavity detunings.
Results may find applications in quantum simulation and quantum gate implementation.
arXiv Detail & Related papers (2022-08-08T12:47:09Z) - Photon-mediated interactions near a Dirac photonic crystal slab [68.8204255655161]
We develop a theory of dipole radiation near photonic Dirac points in realistic structures.
We find positions where the nature of the collective interactions change from being coherent to dissipative ones.
Our results significantly improve the knowledge of Dirac light-matter interfaces.
arXiv Detail & Related papers (2021-07-01T14:21:49Z) - Chiral quantum optics with giant atoms [0.0]
In quantum optics, it is common to assume that atoms are point-like objects compared to the wavelength of the electromagnetic field they interact with.
Previous work has shown that superconducting qubits coupled to a one-dimensional waveguide can behave as such "giant atoms" and then interact through the waveguide without decohering.
Here, we show that this decoherence-free interaction is also possible when the coupling to the waveguide is chiral, i.e., when the coupling depends on the propagation direction of the light.
arXiv Detail & Related papers (2021-06-22T17:39:30Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z) - Collective radiation from distant emitters [63.391402501241195]
We show that the spectrum of the radiated field exhibits non-Markovian features such as linewidth broadening beyond standard superradiance.
We discuss a proof-of-concept implementation of our results in a superconducting circuit platform.
arXiv Detail & Related papers (2020-06-22T19:03:52Z) - Maximum refractive index of an atomic medium [58.720142291102135]
All optical materials with a positive refractive index have a value of index that is of order unity.
Despite the giant response of an isolated atom, we find that the maximum index does not indefinitely grow with increasing density.
We propose an explanation based upon strong-disorder renormalization group theory.
arXiv Detail & Related papers (2020-06-02T14:57:36Z) - Spontaneous emission of atomic dipoles near two-sided semi-transparent
mirrors [0.0]
We review the main properties of the quantised electromagnetic field near a semi-transparent mirror.
We emphasise that the local density of states of the electromagnetic field depends on the reflection rates of both sides of the mirror surface.
Although the effect which we describe here only holds for relatively short atom-mirror distances, it can aid the design of novel photonics devices.
arXiv Detail & Related papers (2020-04-22T23:39:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.