Back to Patterns: Efficient Japanese Morphological Analysis with
Feature-Sequence Trie
- URL: http://arxiv.org/abs/2305.19045v1
- Date: Tue, 30 May 2023 14:00:30 GMT
- Title: Back to Patterns: Efficient Japanese Morphological Analysis with
Feature-Sequence Trie
- Authors: Naoki Yoshinaga
- Abstract summary: This study revisits the fastest pattern-based NLP methods to make them as accurate as possible.
The proposed method induces reliable patterns from a morphological dictionary and annotated data.
Experimental results on two standard datasets confirm that the method exhibits comparable accuracy to learning-based baselines.
- Score: 9.49725486620342
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate neural models are much less efficient than non-neural models and are
useless for processing billions of social media posts or handling user queries
in real time with a limited budget. This study revisits the fastest
pattern-based NLP methods to make them as accurate as possible, thus yielding a
strikingly simple yet surprisingly accurate morphological analyzer for
Japanese. The proposed method induces reliable patterns from a morphological
dictionary and annotated data. Experimental results on two standard datasets
confirm that the method exhibits comparable accuracy to learning-based
baselines, while boasting a remarkable throughput of over 1,000,000 sentences
per second on a single modern CPU. The source code is available at
https://www.tkl.iis.u-tokyo.ac.jp/~ynaga/jagger/
Related papers
- The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
We introduce an experimental protocol that enables model comparisons based on equivalent compute, measured in accelerator hours.
We pre-process an existing large, diverse, and high-quality dataset of books that surpasses existing academic benchmarks in quality, diversity, and document length.
This work also provides two baseline models: a feed-forward model derived from the GPT-2 architecture and a recurrent model in the form of a novel LSTM with ten-fold throughput.
arXiv Detail & Related papers (2023-09-20T10:31:17Z) - Preserving Knowledge Invariance: Rethinking Robustness Evaluation of
Open Information Extraction [50.62245481416744]
We present the first benchmark that simulates the evaluation of open information extraction models in the real world.
We design and annotate a large-scale testbed in which each example is a knowledge-invariant clique.
By further elaborating the robustness metric, a model is judged to be robust if its performance is consistently accurate on the overall cliques.
arXiv Detail & Related papers (2023-05-23T12:05:09Z) - A Stable, Fast, and Fully Automatic Learning Algorithm for Predictive
Coding Networks [65.34977803841007]
Predictive coding networks are neuroscience-inspired models with roots in both Bayesian statistics and neuroscience.
We show how by simply changing the temporal scheduling of the update rule for the synaptic weights leads to an algorithm that is much more efficient and stable than the original one.
arXiv Detail & Related papers (2022-11-16T00:11:04Z) - Improving Pre-trained Language Model Fine-tuning with Noise Stability
Regularization [94.4409074435894]
We propose a novel and effective fine-tuning framework, named Layerwise Noise Stability Regularization (LNSR)
Specifically, we propose to inject the standard Gaussian noise and regularize hidden representations of the fine-tuned model.
We demonstrate the advantages of the proposed method over other state-of-the-art algorithms including L2-SP, Mixout and SMART.
arXiv Detail & Related papers (2022-06-12T04:42:49Z) - Embarrassingly Simple Performance Prediction for Abductive Natural
Language Inference [10.536415845097661]
We propose a method for predicting the performance of NLI models without fine-tuning them.
We show that the accuracy of the cosine similarity approach correlates strongly with the accuracy of the classification approach with a Pearson correlation coefficient of 0.65.
Our method can lead to significant time savings in the process of model selection.
arXiv Detail & Related papers (2022-02-21T18:10:24Z) - Efficient Nearest Neighbor Language Models [114.40866461741795]
Non-parametric neural language models (NLMs) learn predictive distributions of text utilizing an external datastore.
We show how to achieve up to a 6x speed-up in inference speed while retaining comparable performance.
arXiv Detail & Related papers (2021-09-09T12:32:28Z) - Exploiting Language Model for Efficient Linguistic Steganalysis: An
Empirical Study [23.311007481830647]
We present two methods to efficient linguistic steganalysis.
One is to pre-train a language model based on RNN, and the other is to pre-train a sequence autoencoder.
arXiv Detail & Related papers (2021-07-26T12:37:18Z) - The Right Tool for the Job: Matching Model and Instance Complexities [62.95183777679024]
As NLP models become larger, executing a trained model requires significant computational resources incurring monetary and environmental costs.
We propose a modification to contextual representation fine-tuning which, during inference, allows for an early (and fast) "exit"
We test our proposed modification on five different datasets in two tasks: three text classification datasets and two natural language inference benchmarks.
arXiv Detail & Related papers (2020-04-16T04:28:08Z) - Monotonic Cardinality Estimation of Similarity Selection: A Deep
Learning Approach [22.958342743597044]
We investigate the possibilities of utilizing deep learning for cardinality estimation of similarity selection.
We propose a novel and generic method that can be applied to any data type and distance function.
arXiv Detail & Related papers (2020-02-15T20:22:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.