dotears: Scalable, consistent DAG estimation using observational and
interventional data
- URL: http://arxiv.org/abs/2305.19215v2
- Date: Tue, 20 Feb 2024 20:12:20 GMT
- Title: dotears: Scalable, consistent DAG estimation using observational and
interventional data
- Authors: Albert Xue, Jingyou Rao, Sriram Sankararaman, Harold Pimentel
- Abstract summary: Causal gene regulatory networks can be represented by directed acyclic graph (DAG)
We present $texttdotears$ [doo-tairs], a continuous optimization framework to infer a single causal structure.
We show that $texttdotears$ is a provably consistent estimator of the true DAG under mild assumptions.
- Score: 1.220743263007369
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: New biological assays like Perturb-seq link highly parallel CRISPR
interventions to a high-dimensional transcriptomic readout, providing insight
into gene regulatory networks. Causal gene regulatory networks can be
represented by directed acyclic graph (DAGs), but learning DAGs from
observational data is complicated by lack of identifiability and a
combinatorial solution space. Score-based structure learning improves practical
scalability of inferring DAGs. Previous score-based methods are sensitive to
error variance structure; on the other hand, estimation of error variance is
difficult without prior knowledge of structure. Accordingly, we present
$\texttt{dotears}$ [doo-tairs], a continuous optimization framework which
leverages observational and interventional data to infer a single causal
structure, assuming a linear Structural Equation Model (SEM).
$\texttt{dotears}$ exploits structural consequences of hard interventions to
give a marginal estimate of exogenous error structure, bypassing the circular
estimation problem. We show that $\texttt{dotears}$ is a provably consistent
estimator of the true DAG under mild assumptions. $\texttt{dotears}$
outperforms other methods in varied simulations, and in real data infers edges
that validate with higher precision and recall than state-of-the-art methods
through differential expression tests and high-confidence protein-protein
interactions.
Related papers
- CoLiDE: Concomitant Linear DAG Estimation [12.415463205960156]
We deal with the problem of learning acyclic graph structure from observational data to a linear equation.
We propose a new convex score function for sparsity-aware learning DAGs.
arXiv Detail & Related papers (2023-10-04T15:32:27Z) - BayesDAG: Gradient-Based Posterior Inference for Causal Discovery [30.027520859604955]
We introduce a scalable causal discovery framework based on a combination of Markov Chain Monte Carlo and Variational Inference.
Our approach directly samples DAGs from the posterior without requiring any DAG regularization.
We derive a novel equivalence to the permutation-based DAG learning, which opens up possibilities of using any relaxed estimator defined over permutations.
arXiv Detail & Related papers (2023-07-26T02:34:13Z) - Discovering Dynamic Causal Space for DAG Structure Learning [64.763763417533]
We propose a dynamic causal space for DAG structure learning, coined CASPER.
It integrates the graph structure into the score function as a new measure in the causal space to faithfully reflect the causal distance between estimated and ground truth DAG.
arXiv Detail & Related papers (2023-06-05T12:20:40Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
Learning causal structure poses a search problem that typically involves evaluating structures using a score or independence test.
We train a variational inference model to predict the causal structure from observational/interventional data.
Our models exhibit robust generalization capabilities under substantial distribution shift.
arXiv Detail & Related papers (2022-05-25T17:37:08Z) - BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery [97.79015388276483]
A structural equation model (SEM) is an effective framework to reason over causal relationships represented via a directed acyclic graph (DAG)
Recent advances enabled effective maximum-likelihood point estimation of DAGs from observational data.
We propose BCD Nets, a variational framework for estimating a distribution over DAGs characterizing a linear-Gaussian SEM.
arXiv Detail & Related papers (2021-12-06T03:35:21Z) - Multi-task Learning of Order-Consistent Causal Graphs [59.9575145128345]
We consider the problem of discovering $K related Gaussian acyclic graphs (DAGs)
Under multi-task learning setting, we propose a $l_1/l$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models.
We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order.
arXiv Detail & Related papers (2021-11-03T22:10:18Z) - Learning Curves for SGD on Structured Features [23.40229188549055]
We show that the geometry of the data in the induced feature space is crucial to accurately predict the test error throughout learning.
We show that modeling the geometry of the data in the induced feature space is indeed crucial to accurately predict the test error throughout learning.
arXiv Detail & Related papers (2021-06-04T20:48:20Z) - CASTLE: Regularization via Auxiliary Causal Graph Discovery [89.74800176981842]
We introduce Causal Structure Learning (CASTLE) regularization and propose to regularize a neural network by jointly learning the causal relationships between variables.
CASTLE efficiently reconstructs only the features in the causal DAG that have a causal neighbor, whereas reconstruction-based regularizers suboptimally reconstruct all input features.
arXiv Detail & Related papers (2020-09-28T09:49:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.