Jointly Reparametrized Multi-Layer Adaptation for Efficient and Private
Tuning
- URL: http://arxiv.org/abs/2305.19264v1
- Date: Tue, 30 May 2023 17:55:06 GMT
- Title: Jointly Reparametrized Multi-Layer Adaptation for Efficient and Private
Tuning
- Authors: Umang Gupta, Aram Galstyan, Greg Ver Steeg
- Abstract summary: We propose a novel language transformer finetuning strategy that introduces task-specific parameters in multiple transformer layers.
We achieve within 5% of full finetuning performance on GLUE tasks with as few as 4,100 parameters per task.
Our method achieves the best or comparable utility compared to several recent finetuning methods when training with the same privacy constraints.
- Score: 32.69028093984526
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficient finetuning of pretrained language transformers is becoming
increasingly prevalent for solving natural language processing tasks. While
effective, it can still require a large number of tunable parameters. This can
be a drawback for low-resource applications and training with
differential-privacy constraints, where excessive noise may be introduced
during finetuning. To this end, we propose a novel language transformer
finetuning strategy that introduces task-specific parameters in multiple
transformer layers. These parameters are derived from fixed random projections
of a single trainable vector, enabling finetuning with significantly fewer
parameters while maintaining performance. We achieve within 5% of full
finetuning performance on GLUE tasks with as few as 4,100 parameters per task,
outperforming other parameter-efficient finetuning approaches that use a
similar number of per-task parameters. Besides, the random projections can be
precomputed at inference, avoiding additional computational latency. All these
make our method particularly appealing for low-resource applications. Finally,
our method achieves the best or comparable utility compared to several recent
finetuning methods when training with the same privacy constraints,
underscoring its effectiveness and potential real-world impact.
Related papers
- LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) is a popular Efficient Fine Tuning (PEFT) method that effectively adapts large pre-trained models for downstream tasks.
We propose a novel approach that employs a low rank tensor parametrization for model updates.
Our method is both efficient and effective for fine-tuning large language models, achieving a substantial reduction in the number of parameters while maintaining comparable performance.
arXiv Detail & Related papers (2024-10-05T06:59:50Z) - ETHER: Efficient Finetuning of Large-Scale Models with Hyperplane Reflections [59.839926875976225]
We propose the ETHER transformation family, which performs Efficient fineTuning via HypErplane Reflections.
In particular, we introduce ETHER and its relaxation ETHER+, which match or outperform existing PEFT methods with significantly fewer parameters.
arXiv Detail & Related papers (2024-05-30T17:26:02Z) - Parameter-Efficient Fine-Tuning without Introducing New Latency [7.631596468553607]
We introduce a novel adapter technique that directly applies the adapter to pre-trained parameters instead of the hidden representation.
Our proposed method attains a new state-of-the-art outcome in terms of both performance and storage efficiency, storing only 0.03% parameters of full fine-tuning.
arXiv Detail & Related papers (2023-05-26T08:44:42Z) - Sensitivity-Aware Visual Parameter-Efficient Fine-Tuning [91.5113227694443]
We propose a novel visual.
sensuous-aware fine-Tuning (SPT) scheme.
SPT allocates trainable parameters to task-specific important positions.
Experiments on a wide range of downstream recognition tasks show that our SPT is complementary to the existing PEFT methods.
arXiv Detail & Related papers (2023-03-15T12:34:24Z) - Evaluating Parameter-Efficient Transfer Learning Approaches on SURE
Benchmark for Speech Understanding [40.27182770995891]
Fine-tuning is widely used as the default algorithm for transfer learning from pre-trained models.
We introduce the Speech UndeRstanding Evaluation (SURE) benchmark for parameter-efficient learning for various speech-processing tasks.
arXiv Detail & Related papers (2023-03-02T08:57:33Z) - Scaling & Shifting Your Features: A New Baseline for Efficient Model
Tuning [126.84770886628833]
Existing finetuning methods either tune all parameters of the pretrained model (full finetuning) or only tune the last linear layer (linear probing)
We propose a new parameter-efficient finetuning method termed as SSF, representing that researchers only need to Scale and Shift the deep Features extracted by a pre-trained model to catch up with the performance full finetuning.
arXiv Detail & Related papers (2022-10-17T08:14:49Z) - AlphaTuning: Quantization-Aware Parameter-Efficient Adaptation of
Large-Scale Pre-Trained Language Models [19.640997611256168]
We propose AlphaTuning, consisting of post-training quantization of the pre-trained language model and fine-tuning only some parts of quantized parameters for a target task.
Specifically, AlphaTuning works by employing binary-coding quantization, which factorizes the full-precision parameters into binary parameters and a separate set of scaling factors.
We demonstrate that AlphaTuning, when applied to GPT-2 and OPT, performs competitively with full fine-tuning on a variety of downstream tasks while achieving >10x compression ratio under 4-bit quantization and >1,000x reduction in the number of trainable parameters.
arXiv Detail & Related papers (2022-10-08T00:36:00Z) - Polyhistor: Parameter-Efficient Multi-Task Adaptation for Dense Vision
Tasks [36.34331439747556]
We propose Polyhistor and Polyhistor-Lite to share information across different tasks with a few trainable parameters.
Specifically, Polyhistor achieves competitive accuracy compared to the state-of-the-art while only using 10% of their trainable parameters.
arXiv Detail & Related papers (2022-10-07T00:25:02Z) - Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than
In-Context Learning [81.3514358542452]
Few-shot in-context learning (ICL) incurs substantial computational, memory, and storage costs because it involves processing all of the training examples every time a prediction is made.
parameter-efficient fine-tuning offers an alternative paradigm where a small set of parameters are trained to enable a model to perform the new task.
In this paper, we rigorously compare few-shot ICL and parameter-efficient fine-tuning and demonstrate that the latter offers better accuracy as well as dramatically lower computational costs.
arXiv Detail & Related papers (2022-05-11T17:10:41Z) - Parameter-Efficient Transfer Learning with Diff Pruning [108.03864629388404]
diff pruning is a simple approach to enable parameter-efficient transfer learning within the pretrain-finetune framework.
We find that models finetuned with diff pruning can match the performance of fully finetuned baselines on the GLUE benchmark.
arXiv Detail & Related papers (2020-12-14T12:34:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.