Hypothesis Transfer Learning with Surrogate Classification Losses:
Generalization Bounds through Algorithmic Stability
- URL: http://arxiv.org/abs/2305.19694v2
- Date: Fri, 14 Jul 2023 14:53:01 GMT
- Title: Hypothesis Transfer Learning with Surrogate Classification Losses:
Generalization Bounds through Algorithmic Stability
- Authors: Anass Aghbalou, Guillaume Staerman
- Abstract summary: Hypothesis transfer learning (HTL) contrasts domain adaptation by allowing for a previous task leverage, named the source, into a new one, the target.
This paper studies the learning theory of HTL through algorithmic stability, an attractive theoretical framework for machine learning algorithms analysis.
- Score: 3.908842679355255
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hypothesis transfer learning (HTL) contrasts domain adaptation by allowing
for a previous task leverage, named the source, into a new one, the target,
without requiring access to the source data. Indeed, HTL relies only on a
hypothesis learnt from such source data, relieving the hurdle of expansive data
storage and providing great practical benefits. Hence, HTL is highly beneficial
for real-world applications relying on big data. The analysis of such a method
from a theoretical perspective faces multiple challenges, particularly in
classification tasks. This paper deals with this problem by studying the
learning theory of HTL through algorithmic stability, an attractive theoretical
framework for machine learning algorithms analysis. In particular, we are
interested in the statistical behaviour of the regularized empirical risk
minimizers in the case of binary classification. Our stability analysis
provides learning guarantees under mild assumptions. Consequently, we derive
several complexity-free generalization bounds for essential statistical
quantities like the training error, the excess risk and cross-validation
estimates. These refined bounds allow understanding the benefits of transfer
learning and comparing the behaviour of standard losses in different scenarios,
leading to valuable insights for practitioners.
Related papers
- Understanding Transfer Learning via Mean-field Analysis [5.7150083558242075]
We consider two main transfer learning scenarios, $alpha$-ERM and fine-tuning with the KL-regularized empirical risk minimization.
We show the benefits of transfer learning with a one-hidden-layer neural network in the mean-field regime.
arXiv Detail & Related papers (2024-10-22T16:00:44Z) - Generalization Bounds of Surrogate Policies for Combinatorial Optimization Problems [61.580419063416734]
A recent stream of structured learning approaches has improved the practical state of the art for a range of optimization problems.
The key idea is to exploit the statistical distribution over instances instead of dealing with instances separately.
In this article, we investigate methods that smooth the risk by perturbing the policy, which eases optimization and improves the generalization error.
arXiv Detail & Related papers (2024-07-24T12:00:30Z) - Pessimistic Causal Reinforcement Learning with Mediators for Confounded Offline Data [17.991833729722288]
We propose a novel policy learning algorithm, PESsimistic CAusal Learning (PESCAL)
Our key observation is that, by incorporating auxiliary variables that mediate the effect of actions on system dynamics, it is sufficient to learn a lower bound of the mediator distribution function, instead of the Q-function.
We provide theoretical guarantees for the algorithms we propose, and demonstrate their efficacy through simulations, as well as real-world experiments utilizing offline datasets from a leading ride-hailing platform.
arXiv Detail & Related papers (2024-03-18T14:51:19Z) - Knowledge Transfer across Multiple Principal Component Analysis Studies [8.602833477729899]
We propose a two-step transfer learning algorithm to extract useful information from multiple source principal component analysis (PCA) studies.
In the first step, we integrate the shared subspace information across multiple studies by a proposed method named as Grassmannian barycenter.
The resulting estimator for the shared subspace from the first step is further utilized to estimate the target private subspace.
arXiv Detail & Related papers (2024-03-12T09:15:12Z) - A Generalized Unbiased Risk Estimator for Learning with Augmented
Classes [70.20752731393938]
Given unlabeled data, an unbiased risk estimator (URE) can be derived, which can be minimized for LAC with theoretical guarantees.
We propose a generalized URE that can be equipped with arbitrary loss functions while maintaining the theoretical guarantees.
arXiv Detail & Related papers (2023-06-12T06:52:04Z) - On the Generalization for Transfer Learning: An Information-Theoretic Analysis [8.102199960821165]
We give an information-theoretic analysis of the generalization error and excess risk of transfer learning algorithms.
Our results suggest, perhaps as expected, that the Kullback-Leibler divergenceD(mu|mu')$ plays an important role in the characterizations.
We then generalize the mutual information bound with other divergences such as $phi$-divergence and Wasserstein distance.
arXiv Detail & Related papers (2022-07-12T08:20:41Z) - Rethinking Importance Weighting for Transfer Learning [71.81262398144946]
Key assumption in supervised learning is that training and test data follow the same probability distribution.
As real-world machine learning tasks are becoming increasingly complex, novel approaches are explored to cope with such challenges.
arXiv Detail & Related papers (2021-12-19T14:35:25Z) - Risk Minimization from Adaptively Collected Data: Guarantees for
Supervised and Policy Learning [57.88785630755165]
Empirical risk minimization (ERM) is the workhorse of machine learning, but its model-agnostic guarantees can fail when we use adaptively collected data.
We study a generic importance sampling weighted ERM algorithm for using adaptively collected data to minimize the average of a loss function over a hypothesis class.
For policy learning, we provide rate-optimal regret guarantees that close an open gap in the existing literature whenever exploration decays to zero.
arXiv Detail & Related papers (2021-06-03T09:50:13Z) - Constrained Learning with Non-Convex Losses [119.8736858597118]
Though learning has become a core technology of modern information processing, there is now ample evidence that it can lead to biased, unsafe, and prejudiced solutions.
arXiv Detail & Related papers (2021-03-08T23:10:33Z) - Robust Unsupervised Learning via L-Statistic Minimization [38.49191945141759]
We present a general approach to this problem focusing on unsupervised learning.
The key assumption is that the perturbing distribution is characterized by larger losses relative to a given class of admissible models.
We prove uniform convergence bounds with respect to the proposed criterion for several popular models in unsupervised learning.
arXiv Detail & Related papers (2020-12-14T10:36:06Z) - On the Benefits of Invariance in Neural Networks [56.362579457990094]
We show that training with data augmentation leads to better estimates of risk and thereof gradients, and we provide a PAC-Bayes generalization bound for models trained with data augmentation.
We also show that compared to data augmentation, feature averaging reduces generalization error when used with convex losses, and tightens PAC-Bayes bounds.
arXiv Detail & Related papers (2020-05-01T02:08:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.