Causal discovery for time series with constraint-based model and PMIME
measure
- URL: http://arxiv.org/abs/2305.19695v1
- Date: Wed, 31 May 2023 09:38:50 GMT
- Title: Causal discovery for time series with constraint-based model and PMIME
measure
- Authors: Antonin Arsac, Aurore Lomet and Jean-Philippe Poli
- Abstract summary: We present a novel approach for discovering causality in time series data that combines a causal discovery algorithm with an information theoretic-based measure.
We evaluate the performance of our approach on several simulated data sets, showing promising results.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Causality defines the relationship between cause and effect. In multivariate
time series field, this notion allows to characterize the links between several
time series considering temporal lags. These phenomena are particularly
important in medicine to analyze the effect of a drug for example, in
manufacturing to detect the causes of an anomaly in a complex system or in
social sciences... Most of the time, studying these complex systems is made
through correlation only. But correlation can lead to spurious relationships.
To circumvent this problem, we present in this paper a novel approach for
discovering causality in time series data that combines a causal discovery
algorithm with an information theoretic-based measure. Hence the proposed
method allows inferring both linear and non-linear relationships and building
the underlying causal graph. We evaluate the performance of our approach on
several simulated data sets, showing promising results.
Related papers
- On the Identification of Temporally Causal Representation with Instantaneous Dependence [50.14432597910128]
Temporally causal representation learning aims to identify the latent causal process from time series observations.
Most methods require the assumption that the latent causal processes do not have instantaneous relations.
We propose an textbfIDentification framework for instantanetextbfOus textbfLatent dynamics.
arXiv Detail & Related papers (2024-05-24T08:08:05Z) - TC-GAT: Graph Attention Network for Temporal Causality Discovery [6.974417592057705]
Causality is frequently intertwined with temporal elements, as the progression from cause to effect is not instantaneous but rather ensconced in a temporal dimension.
We propose a method for extracting causality from the text that integrates both temporal and causal relations.
We present a novel model, TC-GAT, which employs a graph attention mechanism to assign weights to the temporal relationships and leverages a causal knowledge graph to determine the adjacency matrix.
arXiv Detail & Related papers (2023-04-21T02:26:42Z) - DOMINO: Visual Causal Reasoning with Time-Dependent Phenomena [59.291745595756346]
We propose a set of visual analytics methods that allow humans to participate in the discovery of causal relations associated with windows of time delay.
Specifically, we leverage a well-established method, logic-based causality, to enable analysts to test the significance of potential causes.
Since an effect can be a cause of other effects, we allow users to aggregate different temporal cause-effect relations found with our method into a visual flow diagram.
arXiv Detail & Related papers (2023-03-12T03:40:21Z) - CDANs: Temporal Causal Discovery from Autocorrelated and Non-Stationary
Time Series Data [5.130175508025212]
Causal discovery holds the potential to play a significant role in extracting actionable insights about human health.
We present a novel constraint-based causal discovery approach for autocorrelated and non-stationary time series data.
Our approach identifies lagged and instantaneous/contemporaneous causal relationships along with changing modules that vary over time.
arXiv Detail & Related papers (2023-02-07T04:13:48Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Inferring extended summary causal graphs from observational time series [4.263043028086137]
We make use of information-theoretic measures to determine (in)dependencies between time series.
The behavior of our methods is illustrated through several experiments run on simulated and real datasets.
arXiv Detail & Related papers (2022-05-19T09:39:57Z) - Path Signature Area-Based Causal Discovery in Coupled Time Series [0.0]
We propose the application of confidence sequences to analyze the significance of the magnitude of the signed area between two variables.
This approach provides a new way to define the confidence of a causal link existing between two time series.
arXiv Detail & Related papers (2021-10-23T19:57:22Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
We consider causal discovery in continuous-time for the study of dynamical systems.
We propose a causal discovery algorithm based on penalized Neural ODEs.
arXiv Detail & Related papers (2021-05-06T08:48:02Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
We provide guarantees on identifiability and learnability under mild assumptions.
We develop efficient algorithms based on coupled tensor decomposition with linear constraints to obtain scalable and guaranteed solutions.
arXiv Detail & Related papers (2021-01-17T07:48:45Z) - Amortized Causal Discovery: Learning to Infer Causal Graphs from
Time-Series Data [63.15776078733762]
We propose Amortized Causal Discovery, a novel framework to learn to infer causal relations from time-series data.
We demonstrate experimentally that this approach, implemented as a variational model, leads to significant improvements in causal discovery performance.
arXiv Detail & Related papers (2020-06-18T19:59:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.