An Empirical Evaluation of Rewiring Approaches in Graph Neural Networks
- URL: http://arxiv.org/abs/2305.19717v2
- Date: Wed, 28 May 2025 13:51:47 GMT
- Title: An Empirical Evaluation of Rewiring Approaches in Graph Neural Networks
- Authors: Alessio Micheli, Domenico Tortorella,
- Abstract summary: We propose an evaluation setting based on message-passing models that do not require training to compute node and graph representations.<n>We perform a systematic experimental comparison on real-world node and graph classification tasks, showing that rewiring the underlying graph rarely does confer a practical benefit for message-passing.
- Score: 6.875312133832079
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graph neural networks compute node representations by performing multiple message-passing steps that consist in local aggregations of node features. Having deep models that can leverage longer-range interactions between nodes is hindered by the issues of over-smoothing and over-squashing. In particular, the latter is attributed to the graph topology which guides the message-passing, causing a node representation to become insensitive to information contained at distant nodes. Many graph rewiring methods have been proposed to remedy or mitigate this problem. However, properly evaluating the benefits of these methods is made difficult by the coupling of over-squashing with other issues strictly related to model training, such as vanishing gradients. Therefore, we propose an evaluation setting based on message-passing models that do not require training to compute node and graph representations. We perform a systematic experimental comparison on real-world node and graph classification tasks, showing that rewiring the underlying graph rarely does confer a practical benefit for message-passing.
Related papers
- Gradient Rewiring for Editable Graph Neural Network Training [84.77778876113099]
underlineGradient underlineRewiring method for underlineEditable graph neural network training, named textbfGRE.
We propose a simple yet effective underlineGradient underlineRewiring method for underlineEditable graph neural network training, named textbfGRE.
arXiv Detail & Related papers (2024-10-21T01:01:50Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
This paper proposes a novel Deep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE) for attributed graph data.
The proposed method surpasses state-of-the-art baseline algorithms by a significant margin on different downstream tasks across popular datasets.
arXiv Detail & Related papers (2024-01-12T17:57:07Z) - Degree-based stratification of nodes in Graph Neural Networks [66.17149106033126]
We modify the Graph Neural Network (GNN) architecture so that the weight matrices are learned, separately, for the nodes in each group.
This simple-to-implement modification seems to improve performance across datasets and GNN methods.
arXiv Detail & Related papers (2023-12-16T14:09:23Z) - GraphRARE: Reinforcement Learning Enhanced Graph Neural Network with Relative Entropy [21.553180564868306]
GraphRARE is a framework built upon node relative entropy and deep reinforcement learning.
An innovative node relative entropy is used to measure mutual information between node pairs.
A deep reinforcement learning-based algorithm is developed to optimize the graph topology.
arXiv Detail & Related papers (2023-12-15T11:30:18Z) - Graph Condensation for Inductive Node Representation Learning [59.76374128436873]
We propose mapping-aware graph condensation (MCond)
MCond integrates new nodes into the synthetic graph for inductive representation learning.
On the Reddit dataset, MCond achieves up to 121.5x inference speedup and 55.9x reduction in storage requirements.
arXiv Detail & Related papers (2023-07-29T12:11:14Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Addressing Heterophily in Node Classification with Graph Echo State
Networks [11.52174067809364]
We address the challenges of heterophilic graphs with Graph Echo State Network (GESN) for node classification.
GESN is a reservoir computing model for graphs, where node embeddings are computed by an untrained message-passing function.
Our experiments show that reservoir models are able to achieve better or comparable accuracy with respect to most fully trained deep models.
arXiv Detail & Related papers (2023-05-14T19:42:31Z) - Rethinking Explaining Graph Neural Networks via Non-parametric Subgraph
Matching [68.35685422301613]
We propose a novel non-parametric subgraph matching framework, dubbed MatchExplainer, to explore explanatory subgraphs.
It couples the target graph with other counterpart instances and identifies the most crucial joint substructure by minimizing the node corresponding-based distance.
Experiments on synthetic and real-world datasets show the effectiveness of our MatchExplainer by outperforming all state-of-the-art parametric baselines with significant margins.
arXiv Detail & Related papers (2023-01-07T05:14:45Z) - Leave Graphs Alone: Addressing Over-Squashing without Rewiring [11.52174067809364]
We show that Graph Echo State Networks (GESNs) can achieve a significantly better accuracy on six heterophilic node classification tasks without altering the graph connectivity.
arXiv Detail & Related papers (2022-12-13T12:42:35Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Graph Neural Network with Curriculum Learning for Imbalanced Node
Classification [21.085314408929058]
Graph Neural Network (GNN) is an emerging technique for graph-based learning tasks such as node classification.
In this work, we reveal the vulnerability of GNN to the imbalance of node labels.
We propose a novel graph neural network framework with curriculum learning (GNN-CL) consisting of two modules.
arXiv Detail & Related papers (2022-02-05T10:46:11Z) - Anisotropic Graph Convolutional Network for Semi-supervised Learning [7.843067454030999]
Graph convolutional networks learn effective node embeddings that have proven to be useful in achieving high-accuracy prediction results.
These networks suffer from the issue of over-smoothing and shrinking effect of the graph due in large part to the fact that they diffuse features across the edges of the graph using a linear Laplacian flow.
We propose an anisotropic graph convolutional network for semi-supervised node classification by introducing a nonlinear function that captures informative features from nodes, while preventing oversmoothing.
arXiv Detail & Related papers (2020-10-20T13:56:03Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
We consider the graph link prediction task, which is a classic graph analytical problem with many real-world applications.
In this formalism, a link prediction problem is converted to a graph classification task.
We propose to seek a radically different and novel path by making use of the line graphs in graph theory.
In particular, each node in a line graph corresponds to a unique edge in the original graph. Therefore, link prediction problems in the original graph can be equivalently solved as a node classification problem in its corresponding line graph, instead of a graph classification task.
arXiv Detail & Related papers (2020-10-20T05:54:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.