Spectral Heterogeneous Graph Convolutions via Positive Noncommutative Polynomials
- URL: http://arxiv.org/abs/2305.19872v3
- Date: Tue, 7 May 2024 02:20:18 GMT
- Title: Spectral Heterogeneous Graph Convolutions via Positive Noncommutative Polynomials
- Authors: Mingguo He, Zhewei Wei, Shikun Feng, Zhengjie Huang, Weibin Li, Yu Sun, Dianhai Yu,
- Abstract summary: We present Positive Spectral Heterogeneous Graph Convolutional Network (PSHGCN)
PSHGCN offers a simple yet effective method for learning valid heterogeneous graph filters.
PSHGCN exhibits remarkable scalability, efficiently handling large real-world graphs comprising millions of nodes and edges.
- Score: 34.74726720818622
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heterogeneous Graph Neural Networks (HGNNs) have gained significant popularity in various heterogeneous graph learning tasks. However, most existing HGNNs rely on spatial domain-based methods to aggregate information, i.e., manually selected meta-paths or some heuristic modules, lacking theoretical guarantees. Furthermore, these methods cannot learn arbitrary valid heterogeneous graph filters within the spectral domain, which have limited expressiveness. To tackle these issues, we present a positive spectral heterogeneous graph convolution via positive noncommutative polynomials. Then, using this convolution, we propose PSHGCN, a novel Positive Spectral Heterogeneous Graph Convolutional Network. PSHGCN offers a simple yet effective method for learning valid heterogeneous graph filters. Moreover, we demonstrate the rationale of PSHGCN in the graph optimization framework. We conducted an extensive experimental study to show that PSHGCN can learn diverse heterogeneous graph filters and outperform all baselines on open benchmarks. Notably, PSHGCN exhibits remarkable scalability, efficiently handling large real-world graphs comprising millions of nodes and edges. Our codes are available at https://github.com/ivam-he/PSHGCN.
Related papers
- How Universal Polynomial Bases Enhance Spectral Graph Neural Networks: Heterophily, Over-smoothing, and Over-squashing [24.857304431611464]
Spectral Graph Networks (GNNs) have gained increasing prevalence for heterophily graphs.
In an attempt to avert prohibitive computations, numerous filters have been proposed.
We demystify the correlation between the spectral property of desired vectors and the heterophily degrees.
We develop a novel adaptive heterophily basis wherein the basis mutually form angles reflecting the heterophily degree of the graph.
arXiv Detail & Related papers (2024-05-21T03:28:45Z) - GPatcher: A Simple and Adaptive MLP Model for Alleviating Graph
Heterophily [15.93465948768545]
We demystify the impact of graph heterophily on graph neural networks (GNNs) filters.
We propose a simple yet powerful GNN named GPatcher by leveraging the patch-Mixer architectures.
Our model demonstrates outstanding performance on node classification compared with popular homophily GNNs and state-of-the-art heterophily GNNs.
arXiv Detail & Related papers (2023-06-25T20:57:35Z) - GCNH: A Simple Method For Representation Learning On Heterophilous
Graphs [4.051099980410583]
Graph Neural Networks (GNNs) are well-suited for learning on homophilous graphs.
Recent works have proposed extensions to standard GNN architectures to improve performance on heterophilous graphs.
We propose GCN for Heterophily (GCNH), a simple yet effective GNN architecture applicable to both heterophilous and homophilous scenarios.
arXiv Detail & Related papers (2023-04-21T11:26:24Z) - Graph Contrastive Learning under Heterophily via Graph Filters [51.46061703680498]
Graph contrastive learning (CL) methods learn node representations in a self-supervised manner by maximizing the similarity between the augmented node representations obtained via a GNN-based encoder.
In this work, we propose an effective graph CL method, namely HLCL, for learning graph representations under heterophily.
Our extensive experiments show that HLCL outperforms state-of-the-art graph CL methods on benchmark datasets with heterophily, as well as large-scale real-world graphs, by up to 7%, and outperforms graph supervised learning methods on datasets with heterophily by up to 10%.
arXiv Detail & Related papers (2023-03-11T08:32:39Z) - Specformer: Spectral Graph Neural Networks Meet Transformers [51.644312964537356]
Spectral graph neural networks (GNNs) learn graph representations via spectral-domain graph convolutions.
We introduce Specformer, which effectively encodes the set of all eigenvalues and performs self-attention in the spectral domain.
By stacking multiple Specformer layers, one can build a powerful spectral GNN.
arXiv Detail & Related papers (2023-03-02T07:36:23Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Improving Spectral Graph Convolution for Learning Graph-level
Representation [27.76697047602983]
We show that for learning representations of the entire graphs, the topological distance seems necessary since it characterizes the basic relations between nodes.
By removing it, as well as the limitation of graph filters, the resulting new architecture significantly boosts performance on learning graph representations.
It serves as an understanding that quantitatively measures the effects of the spectrum to input signals in comparison to the well-known spectral/low-pass filters.
arXiv Detail & Related papers (2021-12-14T04:50:46Z) - Pointspectrum: Equivariance Meets Laplacian Filtering for Graph
Representation Learning [3.7875603451557063]
Graph Representation Learning (GRL) has become essential for modern graph data mining and learning tasks.
While Graph Neural Networks (GNNs) have been used in state-of-the-art GRL architectures, they have been shown to suffer from over smoothing.
We propose PointSpectrum, a spectral method that incorporates a set equivariant network to account for a graph's structure.
arXiv Detail & Related papers (2021-09-06T10:59:11Z) - Graph Neural Networks with Adaptive Frequency Response Filter [55.626174910206046]
We develop a graph neural network framework AdaGNN with a well-smooth adaptive frequency response filter.
We empirically validate the effectiveness of the proposed framework on various benchmark datasets.
arXiv Detail & Related papers (2021-04-26T19:31:21Z) - Graphon Pooling in Graph Neural Networks [169.09536309161314]
Graph neural networks (GNNs) have been used effectively in different applications involving the processing of signals on irregular structures modeled by graphs.
We propose a new strategy for pooling and sampling on GNNs using graphons which preserves the spectral properties of the graph.
arXiv Detail & Related papers (2020-03-03T21:04:20Z) - Infinitely Wide Graph Convolutional Networks: Semi-supervised Learning
via Gaussian Processes [144.6048446370369]
Graph convolutional neural networks(GCNs) have recently demonstrated promising results on graph-based semi-supervised classification.
We propose a GP regression model via GCNs(GPGC) for graph-based semi-supervised learning.
We conduct extensive experiments to evaluate GPGC and demonstrate that it outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2020-02-26T10:02:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.