Assessing the Generalizability of a Performance Predictive Model
- URL: http://arxiv.org/abs/2306.00040v1
- Date: Wed, 31 May 2023 12:50:44 GMT
- Title: Assessing the Generalizability of a Performance Predictive Model
- Authors: Ana Nikolikj, Gjorgjina Cenikj, Gordana Ispirova, Diederick Vermetten,
Ryan Dieter Lang, Andries Petrus Engelbrecht, Carola Doerr, Peter
Koro\v{s}ec, Tome Eftimov
- Abstract summary: We propose a workflow to estimate the generalizability of a predictive model for algorithm performance.
The results show that generalizability patterns in the landscape feature space are reflected in the performance space.
- Score: 0.6070952062639761
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A key component of automated algorithm selection and configuration, which in
most cases are performed using supervised machine learning (ML) methods is a
good-performing predictive model. The predictive model uses the feature
representation of a set of problem instances as input data and predicts the
algorithm performance achieved on them. Common machine learning models struggle
to make predictions for instances with feature representations not covered by
the training data, resulting in poor generalization to unseen problems. In this
study, we propose a workflow to estimate the generalizability of a predictive
model for algorithm performance, trained on one benchmark suite to another. The
workflow has been tested by training predictive models across benchmark suites
and the results show that generalizability patterns in the landscape feature
space are reflected in the performance space.
Related papers
- PAMI: partition input and aggregate outputs for model interpretation [69.42924964776766]
In this study, a simple yet effective visualization framework called PAMI is proposed based on the observation that deep learning models often aggregate features from local regions for model predictions.
The basic idea is to mask majority of the input and use the corresponding model output as the relative contribution of the preserved input part to the original model prediction.
Extensive experiments on multiple tasks confirm the proposed method performs better than existing visualization approaches in more precisely finding class-specific input regions.
arXiv Detail & Related papers (2023-02-07T08:48:34Z) - RF+clust for Leave-One-Problem-Out Performance Prediction [0.9281671380673306]
We study leave-one-problem-out (LOPO) performance prediction.
We analyze whether standard random forest (RF) model predictions can be improved by calibrating them with a weighted average of performance values.
arXiv Detail & Related papers (2023-01-23T16:14:59Z) - A prediction and behavioural analysis of machine learning methods for
modelling travel mode choice [0.26249027950824505]
We conduct a systematic comparison of different modelling approaches, across multiple modelling problems, in terms of the key factors likely to affect model choice.
Results indicate that the models with the highest disaggregate predictive performance provide poorer estimates of behavioural indicators and aggregate mode shares.
It is also observed that the MNL model performs robustly in a variety of situations, though ML techniques can improve the estimates of behavioural indices such as Willingness to Pay.
arXiv Detail & Related papers (2023-01-11T11:10:32Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
Retrieval-based machine learning methods have enjoyed success on a wide range of problems.
Despite growing literature showcasing the promise of these models, the theoretical underpinning for such models remains underexplored.
We present a formal treatment of retrieval-based models to characterize their generalization ability.
arXiv Detail & Related papers (2022-10-06T00:33:01Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Pathologies of Pre-trained Language Models in Few-shot Fine-tuning [50.3686606679048]
We show that pre-trained language models with few examples show strong prediction bias across labels.
Although few-shot fine-tuning can mitigate the prediction bias, our analysis shows models gain performance improvement by capturing non-task-related features.
These observations alert that pursuing model performance with fewer examples may incur pathological prediction behavior.
arXiv Detail & Related papers (2022-04-17T15:55:18Z) - Non-Clairvoyant Scheduling with Predictions Revisited [77.86290991564829]
In non-clairvoyant scheduling, the task is to find an online strategy for scheduling jobs with a priori unknown processing requirements.
We revisit this well-studied problem in a recently popular learning-augmented setting that integrates (untrusted) predictions in algorithm design.
We show that these predictions have desired properties, admit a natural error measure as well as algorithms with strong performance guarantees.
arXiv Detail & Related papers (2022-02-21T13:18:11Z) - Models, Pixels, and Rewards: Evaluating Design Trade-offs in Visual
Model-Based Reinforcement Learning [109.74041512359476]
We study a number of design decisions for the predictive model in visual MBRL algorithms.
We find that a range of design decisions that are often considered crucial, such as the use of latent spaces, have little effect on task performance.
We show how this phenomenon is related to exploration and how some of the lower-scoring models on standard benchmarks will perform the same as the best-performing models when trained on the same training data.
arXiv Detail & Related papers (2020-12-08T18:03:21Z) - Surrogate Locally-Interpretable Models with Supervised Machine Learning
Algorithms [8.949704905866888]
Supervised Machine Learning algorithms have become popular in recent years due to their superior predictive performance over traditional statistical methods.
The main focus is on interpretability, the resulting surrogate model also has reasonably good predictive performance.
arXiv Detail & Related papers (2020-07-28T23:46:16Z) - Does imputation matter? Benchmark for predictive models [5.802346990263708]
This paper systematically evaluates the empirical effectiveness of data imputation algorithms for predictive models.
The main contributions are (1) the recommendation of a general method for empirical benchmarking based on real-life classification tasks.
arXiv Detail & Related papers (2020-07-06T15:47:36Z) - Modeling Generalization in Machine Learning: A Methodological and
Computational Study [0.8057006406834467]
We use the concept of the convex hull of the training data in assessing machine learning generalization.
We observe unexpectedly weak associations between the generalization ability of machine learning models and all metrics related to dimensionality.
arXiv Detail & Related papers (2020-06-28T19:06:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.