Audio-Visual Speech Separation in Noisy Environments with a Lightweight
Iterative Model
- URL: http://arxiv.org/abs/2306.00160v1
- Date: Wed, 31 May 2023 20:09:50 GMT
- Title: Audio-Visual Speech Separation in Noisy Environments with a Lightweight
Iterative Model
- Authors: H\'ector Martel, Julius Richter, Kai Li, Xiaolin Hu, Timo Gerkmann
- Abstract summary: We propose Audio-Visual Lightweight ITerative model (AVLIT) to perform audio-visual speech separation in noisy environments.
Our architecture consists of an audio branch and a video branch, with iterative A-FRCNN blocks sharing weights for each modality.
Experiments demonstrate the superiority of our model in both settings with respect to various audio-only and audio-visual baselines.
- Score: 35.171785986428425
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose Audio-Visual Lightweight ITerative model (AVLIT), an effective and
lightweight neural network that uses Progressive Learning (PL) to perform
audio-visual speech separation in noisy environments. To this end, we adopt the
Asynchronous Fully Recurrent Convolutional Neural Network (A-FRCNN), which has
shown successful results in audio-only speech separation. Our architecture
consists of an audio branch and a video branch, with iterative A-FRCNN blocks
sharing weights for each modality. We evaluated our model in a controlled
environment using the NTCD-TIMIT dataset and in-the-wild using a synthetic
dataset that combines LRS3 and WHAM!. The experiments demonstrate the
superiority of our model in both settings with respect to various audio-only
and audio-visual baselines. Furthermore, the reduced footprint of our model
makes it suitable for low resource applications.
Related papers
- Multilingual Audio-Visual Speech Recognition with Hybrid CTC/RNN-T Fast Conformer [59.57249127943914]
We present a multilingual Audio-Visual Speech Recognition model incorporating several enhancements to improve performance and audio noise robustness.
We increase the amount of audio-visual training data for six distinct languages, generating automatic transcriptions of unlabelled multilingual datasets.
Our proposed model achieves new state-of-the-art performance on the LRS3 dataset, reaching WER of 0.8%.
arXiv Detail & Related papers (2024-03-14T01:16:32Z) - Self-Supervised Visual Acoustic Matching [63.492168778869726]
Acoustic matching aims to re-synthesize an audio clip to sound as if it were recorded in a target acoustic environment.
We propose a self-supervised approach to visual acoustic matching where training samples include only the target scene image and audio.
Our approach jointly learns to disentangle room acoustics and re-synthesize audio into the target environment, via a conditional GAN framework and a novel metric.
arXiv Detail & Related papers (2023-07-27T17:59:59Z) - Visually-Guided Sound Source Separation with Audio-Visual Predictive
Coding [57.08832099075793]
Visually-guided sound source separation consists of three parts: visual feature extraction, multimodal feature fusion, and sound signal processing.
This paper presents audio-visual predictive coding (AVPC) to tackle this task in parameter harmonizing and more effective manner.
In addition, we develop a valid self-supervised learning strategy for AVPC via co-predicting two audio-visual representations of the same sound source.
arXiv Detail & Related papers (2023-06-19T03:10:57Z) - AVFormer: Injecting Vision into Frozen Speech Models for Zero-Shot
AV-ASR [79.21857972093332]
We present AVFormer, a method for augmenting audio-only models with visual information, at the same time performing lightweight domain adaptation.
We show that these can be trained on a small amount of weakly labelled video data with minimum additional training time and parameters.
We also introduce a simple curriculum scheme during training which we show is crucial to enable the model to jointly process audio and visual information effectively.
arXiv Detail & Related papers (2023-03-29T07:24:28Z) - AV-NeRF: Learning Neural Fields for Real-World Audio-Visual Scene
Synthesis [61.07542274267568]
We study a new task -- real-world audio-visual scene synthesis -- and a first-of-its-kind NeRF-based approach for multimodal learning.
We propose an acoustic-aware audio generation module that integrates prior knowledge of audio propagation into NeRF.
We present a coordinate transformation module that expresses a view direction relative to the sound source, enabling the model to learn sound source-centric acoustic fields.
arXiv Detail & Related papers (2023-02-04T04:17:19Z) - A Study of Designing Compact Audio-Visual Wake Word Spotting System
Based on Iterative Fine-Tuning in Neural Network Pruning [57.28467469709369]
We investigate on designing a compact audio-visual wake word spotting (WWS) system by utilizing visual information.
We introduce a neural network pruning strategy via the lottery ticket hypothesis in an iterative fine-tuning manner (LTH-IF)
The proposed audio-visual system achieves significant performance improvements over the single-modality (audio-only or video-only) system under different noisy conditions.
arXiv Detail & Related papers (2022-02-17T08:26:25Z) - MTCRNN: A multi-scale RNN for directed audio texture synthesis [0.0]
We introduce a novel modelling approach for textures, combining recurrent neural networks trained at different levels of abstraction with a conditioning strategy that allows for user-directed synthesis.
We demonstrate the model's performance on a variety of datasets, examine its performance on various metrics, and discuss some potential applications.
arXiv Detail & Related papers (2020-11-25T09:13:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.