Maximal Domain Independent Representations Improve Transfer Learning
- URL: http://arxiv.org/abs/2306.00262v3
- Date: Thu, 6 Jun 2024 18:50:59 GMT
- Title: Maximal Domain Independent Representations Improve Transfer Learning
- Authors: Adrian Shuai Li, Elisa Bertino, Xuan-Hong Dang, Ankush Singla, Yuhai Tu, Mark N Wegman,
- Abstract summary: Domain adaptation (DA) involves the decomposition of data representation into a domain independent representation (DIRep) and a domain dependent representation (DDRep)
We develop a new algorithm wherein a stronger constraint is imposed to minimize the DDRep by using a KL divergent loss for the DDRep in order to create the maximal DIRep that enhances transfer learning performance.
We demonstrate the equal-or-better performance of our approach against state-of-the-art algorithms by using several standard benchmark image datasets including Office.
- Score: 10.716812429325984
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The most effective domain adaptation (DA) involves the decomposition of data representation into a domain independent representation (DIRep), and a domain dependent representation (DDRep). A classifier is trained by using the DIRep of the labeled source images. Since the DIRep is domain invariant, the classifier can be "transferred" to make predictions for the target domain with no (or few) labels. However, information useful for classification in the target domain can "hide" in the DDRep in current DA algorithms such as Domain-Separation-Networks (DSN). DSN's weak constraint to enforce orthogonality of DIRep and DDRep, allows this hiding and can result in poor performance. To address this shortcoming, we developed a new algorithm wherein a stronger constraint is imposed to minimize the DDRep by using a KL divergent loss for the DDRep in order to create the maximal DIRep that enhances transfer learning performance. By using synthetic data sets, we show explicitly that depending on initialization DSN with its weaker constraint can lead to sub-optimal solutions with poorer DA performance whereas our algorithm with maximal DIRep is robust against such perturbations. We demonstrate the equal-or-better performance of our approach against state-of-the-art algorithms by using several standard benchmark image datasets including Office. We further highlight the compatibility of our algorithm with pretrained models, extending its applicability and versatility in real-world scenarios.
Related papers
- Improving Domain Adaptation Through Class Aware Frequency Transformation [15.70058524548143]
Most of the Unsupervised Domain Adaptation (UDA) algorithms focus on reducing the global domain shift between labelled source and unlabelled target domains.
We propose a novel approach based on traditional image processing technique Class Aware Frequency Transformation (CAFT)
CAFT utilizes pseudo label based class consistent low-frequency swapping for improving the overall performance of the existing UDA algorithms.
arXiv Detail & Related papers (2024-07-28T18:16:41Z) - Balancing Discriminability and Transferability for Source-Free Domain
Adaptation [55.143687986324935]
Conventional domain adaptation (DA) techniques aim to improve domain transferability by learning domain-invariant representations.
The requirement of simultaneous access to labeled source and unlabeled target renders them unsuitable for the challenging source-free DA setting.
We derive novel insights to show that a mixup between original and corresponding translated generic samples enhances the discriminability-transferability trade-off.
arXiv Detail & Related papers (2022-06-16T09:06:22Z) - Domain-Agnostic Prior for Transfer Semantic Segmentation [197.9378107222422]
Unsupervised domain adaptation (UDA) is an important topic in the computer vision community.
We present a mechanism that regularizes cross-domain representation learning with a domain-agnostic prior (DAP)
Our research reveals that UDA benefits much from better proxies, possibly from other data modalities.
arXiv Detail & Related papers (2022-04-06T09:13:25Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
We design a Domain Disentanglement Faster-RCNN (DDF) to eliminate the source-specific information in the features for detection task learning.
Our DDF method facilitates the feature disentanglement at the global and local stages, with a Global Triplet Disentanglement (GTD) module and an Instance Similarity Disentanglement (ISD) module.
By outperforming state-of-the-art methods on four benchmark UDA object detection tasks, our DDF method is demonstrated to be effective with wide applicability.
arXiv Detail & Related papers (2022-01-06T05:43:01Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - Re-energizing Domain Discriminator with Sample Relabeling for
Adversarial Domain Adaptation [88.86865069583149]
Unsupervised domain adaptation (UDA) methods exploit domain adversarial training to align the features to reduce domain gap.
In this work, we propose an efficient optimization strategy named Re-enforceable Adversarial Domain Adaptation (RADA)
RADA aims to re-energize the domain discriminator during the training by using dynamic domain labels.
arXiv Detail & Related papers (2021-03-22T08:32:55Z) - Discrepancy Minimization in Domain Generalization with Generative
Nearest Neighbors [13.047289562445242]
Domain generalization (DG) deals with the problem of domain shift where a machine learning model trained on multiple-source domains fail to generalize well on a target domain with different statistics.
Multiple approaches have been proposed to solve the problem of domain generalization by learning domain invariant representations across the source domains that fail to guarantee generalization on the shifted target domain.
We propose a Generative Nearest Neighbor based Discrepancy Minimization (GNNDM) method which provides a theoretical guarantee that is upper bounded by the error in the labeling process of the target.
arXiv Detail & Related papers (2020-07-28T14:54:25Z) - Unified Multi-Domain Learning and Data Imputation using Adversarial
Autoencoder [5.933303832684138]
We present a novel framework that can combine multi-domain learning (MDL), data imputation (DI) and multi-task learning (MTL)
The core of our method is an adversarial autoencoder that can: (1) learn to produce domain-invariant embeddings to reduce the difference between domains; (2) learn the data distribution for each domain and correctly perform data imputation on missing data.
arXiv Detail & Related papers (2020-03-15T19:55:07Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
Domain adaptation methods assume that distributions between the two domains are shifted and attempt to realign them.
We propose a generic framework based on graph embedding.
We show that the proposed approach leads to a powerful Domain Adaptation framework.
arXiv Detail & Related papers (2020-03-09T12:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.