Maximizing Information in Domain-Invariant Representation Improves Transfer Learning
- URL: http://arxiv.org/abs/2306.00262v4
- Date: Mon, 16 Jun 2025 20:13:11 GMT
- Title: Maximizing Information in Domain-Invariant Representation Improves Transfer Learning
- Authors: Adrian Shuai Li, Elisa Bertino, Xuan-Hong Dang, Ankush Singla, Yuhai Tu, Mark N Wegman,
- Abstract summary: Domain adaptation (DA) technique involves decomposition of data representation into a domain-independent representation (DIRep) and a domain-dependent representation (DDRep)<n>Current DA algorithms, such as Domain-Separation Networks (DSN), do not adequately address this issue.<n>We develop a new algorithm wherein a stronger constraint is imposed to minimize the information content in DDRep to create a DIRep that retains relevant information about the target labels.
- Score: 10.716812429325984
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The most effective domain adaptation (DA) technique involves the decomposition of data representation into a domain-independent representation (DIRep) and a domain-dependent representation (DDRep). A classifier is trained by using the DIRep on the labeled source images. Since the DIRep is domain invariant, the classifier can be "transferred" to make predictions for the target domain with no (or few) labels. However, information useful for classification in the target domain can "hide" in the DDRep. Current DA algorithms, such as Domain-Separation Networks (DSN), do not adequately address this issue. DSN's weak constraint to enforce the orthogonality of DIRep and DDRep allows this hiding effect and can result in poor performance. To address this shortcoming, we develop a new algorithm wherein a stronger constraint is imposed to minimize the information content in DDRep to create a DIRep that retains relevant information about the target labels and, in turn, results in a better invariant representation. By using synthetic datasets, we show explicitly that depending on the initialization, DSN, with its weaker constraint, can lead to sub-optimal solutions with poorer DA performance. In contrast, our algorithm is robust against such perturbations. We demonstrate the equal-or-better performance of our approach against DSN and other recent DA methods by using several standard benchmark image datasets. We further highlight the compatibility of our algorithm with pre-trained models for classifying real-world images and showcase its adaptability and versatility through its application in network intrusion detection.
Related papers
- Multi-Prompt Progressive Alignment for Multi-Source Unsupervised Domain Adaptation [73.40696661117408]
We propose a progressive alignment strategy for adapting CLIP to unlabeled downstream task.<n>We name our approach MP2A and test it on three popular UDA benchmarks, namely ImageCLEF, Office-Home, and the most challenging DomainNet.<n> Experiments showcase that MP2A achieves state-of-the-art performance when compared with most recent CLIP-based MS-UDA approaches.
arXiv Detail & Related papers (2025-07-31T09:42:42Z) - Let Synthetic Data Shine: Domain Reassembly and Soft-Fusion for Single Domain Generalization [68.41367635546183]
Single Domain Generalization aims to train models with consistent performance across diverse scenarios using data from a single source.
We propose Discriminative Domain Reassembly and Soft-Fusion (DRSF), a training framework leveraging synthetic data to improve model generalization.
arXiv Detail & Related papers (2025-03-17T18:08:03Z) - Improving Domain Adaptation Through Class Aware Frequency Transformation [15.70058524548143]
Most of the Unsupervised Domain Adaptation (UDA) algorithms focus on reducing the global domain shift between labelled source and unlabelled target domains.
We propose a novel approach based on traditional image processing technique Class Aware Frequency Transformation (CAFT)
CAFT utilizes pseudo label based class consistent low-frequency swapping for improving the overall performance of the existing UDA algorithms.
arXiv Detail & Related papers (2024-07-28T18:16:41Z) - Balancing Discriminability and Transferability for Source-Free Domain
Adaptation [55.143687986324935]
Conventional domain adaptation (DA) techniques aim to improve domain transferability by learning domain-invariant representations.
The requirement of simultaneous access to labeled source and unlabeled target renders them unsuitable for the challenging source-free DA setting.
We derive novel insights to show that a mixup between original and corresponding translated generic samples enhances the discriminability-transferability trade-off.
arXiv Detail & Related papers (2022-06-16T09:06:22Z) - Domain-Agnostic Prior for Transfer Semantic Segmentation [197.9378107222422]
Unsupervised domain adaptation (UDA) is an important topic in the computer vision community.
We present a mechanism that regularizes cross-domain representation learning with a domain-agnostic prior (DAP)
Our research reveals that UDA benefits much from better proxies, possibly from other data modalities.
arXiv Detail & Related papers (2022-04-06T09:13:25Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
We design a Domain Disentanglement Faster-RCNN (DDF) to eliminate the source-specific information in the features for detection task learning.
Our DDF method facilitates the feature disentanglement at the global and local stages, with a Global Triplet Disentanglement (GTD) module and an Instance Similarity Disentanglement (ISD) module.
By outperforming state-of-the-art methods on four benchmark UDA object detection tasks, our DDF method is demonstrated to be effective with wide applicability.
arXiv Detail & Related papers (2022-01-06T05:43:01Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - Re-energizing Domain Discriminator with Sample Relabeling for
Adversarial Domain Adaptation [88.86865069583149]
Unsupervised domain adaptation (UDA) methods exploit domain adversarial training to align the features to reduce domain gap.
In this work, we propose an efficient optimization strategy named Re-enforceable Adversarial Domain Adaptation (RADA)
RADA aims to re-energize the domain discriminator during the training by using dynamic domain labels.
arXiv Detail & Related papers (2021-03-22T08:32:55Z) - Unsupervised and self-adaptative techniques for cross-domain person
re-identification [82.54691433502335]
Person Re-Identification (ReID) across non-overlapping cameras is a challenging task.
Unsupervised Domain Adaptation (UDA) is a promising alternative, as it performs feature-learning adaptation from a model trained on a source to a target domain without identity-label annotation.
In this paper, we propose a novel UDA-based ReID method that takes advantage of triplets of samples created by a new offline strategy.
arXiv Detail & Related papers (2021-03-21T23:58:39Z) - Discrepancy Minimization in Domain Generalization with Generative
Nearest Neighbors [13.047289562445242]
Domain generalization (DG) deals with the problem of domain shift where a machine learning model trained on multiple-source domains fail to generalize well on a target domain with different statistics.
Multiple approaches have been proposed to solve the problem of domain generalization by learning domain invariant representations across the source domains that fail to guarantee generalization on the shifted target domain.
We propose a Generative Nearest Neighbor based Discrepancy Minimization (GNNDM) method which provides a theoretical guarantee that is upper bounded by the error in the labeling process of the target.
arXiv Detail & Related papers (2020-07-28T14:54:25Z) - Unified Multi-Domain Learning and Data Imputation using Adversarial
Autoencoder [5.933303832684138]
We present a novel framework that can combine multi-domain learning (MDL), data imputation (DI) and multi-task learning (MTL)
The core of our method is an adversarial autoencoder that can: (1) learn to produce domain-invariant embeddings to reduce the difference between domains; (2) learn the data distribution for each domain and correctly perform data imputation on missing data.
arXiv Detail & Related papers (2020-03-15T19:55:07Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
Domain adaptation methods assume that distributions between the two domains are shifted and attempt to realign them.
We propose a generic framework based on graph embedding.
We show that the proposed approach leads to a powerful Domain Adaptation framework.
arXiv Detail & Related papers (2020-03-09T12:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.