On the Equivalence of Consistency-Type Models: Consistency Models,
Consistent Diffusion Models, and Fokker-Planck Regularization
- URL: http://arxiv.org/abs/2306.00367v1
- Date: Thu, 1 Jun 2023 05:57:40 GMT
- Title: On the Equivalence of Consistency-Type Models: Consistency Models,
Consistent Diffusion Models, and Fokker-Planck Regularization
- Authors: Chieh-Hsin Lai, Yuhta Takida, Toshimitsu Uesaka, Naoki Murata, Yuki
Mitsufuji, and Stefano Ermon
- Abstract summary: We propose theoretical connections between three recent consistency'' notions designed to enhance diffusion models for distinct objectives.
Our insights offer the potential for a more comprehensive and encompassing framework for consistency-type models.
- Score: 68.13034137660334
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The emergence of various notions of ``consistency'' in diffusion models has
garnered considerable attention and helped achieve improved sample quality,
likelihood estimation, and accelerated sampling. Although similar concepts have
been proposed in the literature, the precise relationships among them remain
unclear. In this study, we establish theoretical connections between three
recent ``consistency'' notions designed to enhance diffusion models for
distinct objectives. Our insights offer the potential for a more comprehensive
and encompassing framework for consistency-type models.
Related papers
- Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
Despite the state-of-the-art performance, diffusion models are known for their slow sample generation due to the extensive number of steps involved.
This paper contributes towards the first statistical theory for consistency models, formulating their training as a distribution discrepancy minimization problem.
arXiv Detail & Related papers (2024-06-23T20:34:18Z) - Diffusion Models in Low-Level Vision: A Survey [82.77962165415153]
diffusion model-based solutions have emerged as widely acclaimed for their ability to produce samples of superior quality and diversity.
We present three generic diffusion modeling frameworks and explore their correlations with other deep generative models.
We summarize extended diffusion models applied in other tasks, including medical, remote sensing, and video scenarios.
arXiv Detail & Related papers (2024-06-17T01:49:27Z) - An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization [59.63880337156392]
Diffusion models have achieved tremendous success in computer vision, audio, reinforcement learning, and computational biology.
Despite the significant empirical success, theory of diffusion models is very limited.
This paper provides a well-rounded theoretical exposure for stimulating forward-looking theories and methods of diffusion models.
arXiv Detail & Related papers (2024-04-11T14:07:25Z) - Demystifying Variational Diffusion Models [23.601173340762074]
We present a more straightforward introduction to diffusion models using directed graphical modelling and variational Bayesian principles.
Our exposition constitutes a comprehensive technical review spanning from foundational concepts like deep latent variable models to recent advances in continuous-time diffusion-based modelling.
We provide additional mathematical insights that were omitted in the seminal works whenever possible to aid in understanding, while avoiding the introduction of new notation.
arXiv Detail & Related papers (2024-01-11T22:37:37Z) - Variance-Preserving-Based Interpolation Diffusion Models for Speech
Enhancement [53.2171981279647]
We present a framework that encapsulates both the VP- and variance-exploding (VE)-based diffusion methods.
To improve performance and ease model training, we analyze the common difficulties encountered in diffusion models.
We evaluate our model against several methods using a public benchmark to showcase the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-14T14:22:22Z) - Diffusion Models: A Comprehensive Survey of Methods and Applications [10.557289965753437]
Diffusion models are a class of deep generative models that have shown impressive results on various tasks with dense theoretical founding.
Recent studies have shown great enthusiasm on improving the performance of diffusion model.
arXiv Detail & Related papers (2022-09-02T02:59:10Z) - Conditional Image Generation with Score-Based Diffusion Models [1.1470070927586016]
We conduct a systematic comparison and theoretical analysis of different approaches to learning conditional probability distributions with score-based diffusion models.
We prove results which provide a theoretical justification for one of the most successful estimators of the conditional score.
We introduce a multi-speed diffusion framework, which leads to a new estimator for the conditional score, performing on par with previous state-of-the-art approaches.
arXiv Detail & Related papers (2021-11-26T17:10:07Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.