Symmetric Uncertainty-Aware Feature Transmission for Depth
Super-Resolution
- URL: http://arxiv.org/abs/2306.00386v1
- Date: Thu, 1 Jun 2023 06:35:59 GMT
- Title: Symmetric Uncertainty-Aware Feature Transmission for Depth
Super-Resolution
- Authors: Wuxuan Shi, Mang Ye, Bo Du
- Abstract summary: We propose a novel Symmetric Uncertainty-aware Feature Transmission (SUFT) for color-guided DSR.
Our method achieves superior performance compared to state-of-the-art methods.
- Score: 52.582632746409665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Color-guided depth super-resolution (DSR) is an encouraging paradigm that
enhances a low-resolution (LR) depth map guided by an extra high-resolution
(HR) RGB image from the same scene. Existing methods usually use interpolation
to upscale the depth maps before feeding them into the network and transfer the
high-frequency information extracted from HR RGB images to guide the
reconstruction of depth maps. However, the extracted high-frequency information
usually contains textures that are not present in depth maps in the existence
of the cross-modality gap, and the noises would be further aggravated by
interpolation due to the resolution gap between the RGB and depth images. To
tackle these challenges, we propose a novel Symmetric Uncertainty-aware Feature
Transmission (SUFT) for color-guided DSR. (1) For the resolution gap, SUFT
builds an iterative up-and-down sampling pipeline, which makes depth features
and RGB features spatially consistent while suppressing noise amplification and
blurring by replacing common interpolated pre-upsampling. (2) For the
cross-modality gap, we propose a novel Symmetric Uncertainty scheme to remove
parts of RGB information harmful to the recovery of HR depth maps. Extensive
experiments on benchmark datasets and challenging real-world settings suggest
that our method achieves superior performance compared to state-of-the-art
methods. Our code and models are available at
https://github.com/ShiWuxuan/SUFT.
Related papers
- SGNet: Structure Guided Network via Gradient-Frequency Awareness for
Depth Map Super-Resolution [17.847216843129342]
Depth super-resolution aims to restore high-resolution (HR) depth from low-resolution (LR) one, where RGB image is often used to promote this task.
Recent image guided DSR approaches mainly focus on spatial domain to rebuild depth structure.
We propose structure guided network (SGNet), a method that pays more attention to gradient and frequency domains.
arXiv Detail & Related papers (2023-12-10T07:17:06Z) - Spherical Space Feature Decomposition for Guided Depth Map
Super-Resolution [123.04455334124188]
Guided depth map super-resolution (GDSR) aims to upsample low-resolution (LR) depth maps with additional information involved in high-resolution (HR) RGB images from the same scene.
In this paper, we propose the Spherical Space feature Decomposition Network (SSDNet) to solve the above issues.
Our method can achieve state-of-the-art results on four test datasets, as well as successfully generalize to real-world scenes.
arXiv Detail & Related papers (2023-03-15T21:22:21Z) - RGB-D Grasp Detection via Depth Guided Learning with Cross-modal
Attention [14.790193023912973]
This paper proposes a novel learning based approach to RGB-D grasp detection, namely Depth Guided Cross-modal Attention Network (DGCAN)
To better leverage the geometry information recorded in the depth channel, a complete 6-dimensional rectangle representation is adopted with the grasp depth dedicatedly considered.
The prediction of the extra grasp depth substantially strengthens feature learning, thereby leading to more accurate results.
arXiv Detail & Related papers (2023-02-28T02:41:27Z) - Joint Learning of Salient Object Detection, Depth Estimation and Contour
Extraction [91.43066633305662]
We propose a novel multi-task and multi-modal filtered transformer (MMFT) network for RGB-D salient object detection (SOD)
Specifically, we unify three complementary tasks: depth estimation, salient object detection and contour estimation. The multi-task mechanism promotes the model to learn the task-aware features from the auxiliary tasks.
Experiments show that it not only significantly surpasses the depth-based RGB-D SOD methods on multiple datasets, but also precisely predicts a high-quality depth map and salient contour at the same time.
arXiv Detail & Related papers (2022-03-09T17:20:18Z) - Cross-modality Discrepant Interaction Network for RGB-D Salient Object
Detection [78.47767202232298]
We propose a novel Cross-modality Discrepant Interaction Network (CDINet) for RGB-D SOD.
Two components are designed to implement the effective cross-modality interaction.
Our network outperforms $15$ state-of-the-art methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2021-08-04T11:24:42Z) - Discrete Cosine Transform Network for Guided Depth Map Super-Resolution [19.86463937632802]
The goal is to use high-resolution (HR) RGB images to provide extra information on edges and object contours, so that low-resolution depth maps can be upsampled to HR ones.
We propose an advanced Discrete Cosine Transform Network (DCTNet), which is composed of four components.
We show that our method can generate accurate and HR depth maps, surpassing state-of-the-art methods.
arXiv Detail & Related papers (2021-04-14T17:01:03Z) - Towards Fast and Accurate Real-World Depth Super-Resolution: Benchmark
Dataset and Baseline [48.69396457721544]
We build a large-scale dataset named "RGB-D-D" to promote the study of depth map super-resolution (SR)
We provide a fast depth map super-resolution (FDSR) baseline, in which the high-frequency component adaptively decomposed from RGB image to guide the depth map SR.
For the real-world LR depth maps, our algorithm can produce more accurate HR depth maps with clearer boundaries and to some extent correct the depth value errors.
arXiv Detail & Related papers (2021-04-13T13:27:26Z) - High-resolution Depth Maps Imaging via Attention-based Hierarchical
Multi-modal Fusion [84.24973877109181]
We propose a novel attention-based hierarchical multi-modal fusion network for guided DSR.
We show that our approach outperforms state-of-the-art methods in terms of reconstruction accuracy, running speed and memory efficiency.
arXiv Detail & Related papers (2021-04-04T03:28:33Z) - Multi-Scale Progressive Fusion Learning for Depth Map Super-Resolution [11.072332820377612]
The resolution of depth map collected by depth camera is often lower than that of its associated RGB camera.
A major problem with depth map super-resolution is that there will be obvious jagged edges and excessive loss of details.
We propose a multi-scale progressive fusion network for depth map SR, which possess an structure to integrate hierarchical features in different domains.
arXiv Detail & Related papers (2020-11-24T03:03:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.