MammalNet: A Large-scale Video Benchmark for Mammal Recognition and
Behavior Understanding
- URL: http://arxiv.org/abs/2306.00576v1
- Date: Thu, 1 Jun 2023 11:45:33 GMT
- Title: MammalNet: A Large-scale Video Benchmark for Mammal Recognition and
Behavior Understanding
- Authors: Jun Chen, Ming Hu, Darren J. Coker, Michael L. Berumen, Blair
Costelloe, Sara Beery, Anna Rohrbach, Mohamed Elhoseiny
- Abstract summary: MammalNet is a large-scale animal behavior dataset with taxonomy-guided annotations of mammals and their common behaviors.
It contains over 18K videos totaling 539 hours, which is 10 times larger than the largest existing animal behavior dataset.
We establish three benchmarks on MammalNet: standard animal and behavior recognition, compositional low-shot animal and behavior recognition, and behavior detection.
- Score: 38.3767550066302
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Monitoring animal behavior can facilitate conservation efforts by providing
key insights into wildlife health, population status, and ecosystem function.
Automatic recognition of animals and their behaviors is critical for
capitalizing on the large unlabeled datasets generated by modern video devices
and for accelerating monitoring efforts at scale. However, the development of
automated recognition systems is currently hindered by a lack of appropriately
labeled datasets. Existing video datasets 1) do not classify animals according
to established biological taxonomies; 2) are too small to facilitate
large-scale behavioral studies and are often limited to a single species; and
3) do not feature temporally localized annotations and therefore do not
facilitate localization of targeted behaviors within longer video sequences.
Thus, we propose MammalNet, a new large-scale animal behavior dataset with
taxonomy-guided annotations of mammals and their common behaviors. MammalNet
contains over 18K videos totaling 539 hours, which is ~10 times larger than the
largest existing animal behavior dataset. It covers 17 orders, 69 families, and
173 mammal categories for animal categorization and captures 12 high-level
animal behaviors that received focus in previous animal behavior studies. We
establish three benchmarks on MammalNet: standard animal and behavior
recognition, compositional low-shot animal and behavior recognition, and
behavior detection. Our dataset and code have been made available at:
https://mammal-net.github.io.
Related papers
- From Forest to Zoo: Great Ape Behavior Recognition with ChimpBehave [0.0]
We introduce ChimpBehave, a novel dataset featuring over 2 hours of video (approximately 193,000 video frames) of zoo-housed chimpanzees.
ChimpBehave meticulously annotated with bounding boxes and behavior labels for action recognition.
We benchmark our dataset using a state-of-the-art CNN-based action recognition model.
arXiv Detail & Related papers (2024-05-30T13:11:08Z) - OmniMotionGPT: Animal Motion Generation with Limited Data [70.35662376853163]
We introduce AnimalML3D, the first text-animal motion dataset with 1240 animation sequences spanning 36 different animal identities.
We are able to generate animal motions with high diversity and fidelity, quantitatively and qualitatively outperforming the results of training human motion generation baselines on animal data.
arXiv Detail & Related papers (2023-11-30T07:14:00Z) - Meerkat Behaviour Recognition Dataset [3.53348643468069]
We introduce a large meerkat behaviour recognition video dataset with diverse annotated behaviours.
This dataset includes videos from two positions within the meerkat enclosure at the Wellington Zoo (Wellington, New Zealand)
arXiv Detail & Related papers (2023-06-20T06:50:50Z) - CVB: A Video Dataset of Cattle Visual Behaviors [13.233877352490923]
Existing datasets for cattle behavior recognition are mostly small, lack well-defined labels, or are collected in unrealistic controlled environments.
We introduce a new dataset, called Cattle Visual Behaviors (CVB), that consists of 502 video clips, each fifteen seconds long, captured in natural lighting conditions, and annotated with eleven visually perceptible behaviors of grazing cattle.
arXiv Detail & Related papers (2023-05-26T00:44:11Z) - CNN-Based Action Recognition and Pose Estimation for Classifying Animal
Behavior from Videos: A Survey [0.0]
Action recognition, classifying activities performed by one or more subjects in a trimmed video, forms the basis of many techniques.
Deep learning models for human action recognition have progressed over the last decade.
Recent interest in research that incorporates deep learning-based action recognition for classification has increased.
arXiv Detail & Related papers (2023-01-15T20:54:44Z) - TempNet: Temporal Attention Towards the Detection of Animal Behaviour in
Videos [63.85815474157357]
We propose an efficient computer vision- and deep learning-based method for the detection of biological behaviours in videos.
TempNet uses an encoder bridge and residual blocks to maintain model performance with a two-staged, spatial, then temporal, encoder.
We demonstrate its application to the detection of sablefish (Anoplopoma fimbria) startle events.
arXiv Detail & Related papers (2022-11-17T23:55:12Z) - APT-36K: A Large-scale Benchmark for Animal Pose Estimation and Tracking [77.87449881852062]
APT-36K is the first large-scale benchmark for animal pose estimation and tracking.
It consists of 2,400 video clips collected and filtered from 30 animal species with 15 frames for each video, resulting in 36,000 frames in total.
We benchmark several representative models on the following three tracks: (1) supervised animal pose estimation on a single frame under intra- and inter-domain transfer learning settings, (2) inter-species domain generalization test for unseen animals, and (3) animal pose estimation with animal tracking.
arXiv Detail & Related papers (2022-06-12T07:18:36Z) - Animal Kingdom: A Large and Diverse Dataset for Animal Behavior
Understanding [4.606145900630665]
We create a large and diverse dataset, Animal Kingdom, that provides multiple annotated tasks.
Our dataset contains 50 hours of annotated videos to localize relevant animal behavior segments.
We propose a Collaborative Action Recognition (CARe) model that learns general and specific features for action recognition with unseen new animals.
arXiv Detail & Related papers (2022-04-18T02:05:15Z) - AP-10K: A Benchmark for Animal Pose Estimation in the Wild [83.17759850662826]
We propose AP-10K, the first large-scale benchmark for general animal pose estimation.
AP-10K consists of 10,015 images collected and filtered from 23 animal families and 60 species.
Results provide sound empirical evidence on the superiority of learning from diverse animals species in terms of both accuracy and generalization ability.
arXiv Detail & Related papers (2021-08-28T10:23:34Z) - Transferring Dense Pose to Proximal Animal Classes [83.84439508978126]
We show that it is possible to transfer the knowledge existing in dense pose recognition for humans, as well as in more general object detectors and segmenters, to the problem of dense pose recognition in other classes.
We do this by establishing a DensePose model for the new animal which is also geometrically aligned to humans.
We also introduce two benchmark datasets labelled in the manner of DensePose for the class chimpanzee and use them to evaluate our approach.
arXiv Detail & Related papers (2020-02-28T21:43:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.