Interpretable Math Word Problem Solution Generation Via Step-by-step
Planning
- URL: http://arxiv.org/abs/2306.00784v1
- Date: Thu, 1 Jun 2023 15:16:18 GMT
- Title: Interpretable Math Word Problem Solution Generation Via Step-by-step
Planning
- Authors: Mengxue Zhang and Zichao Wang and Zhichao Yang and Weiqi Feng and
Andrew Lan
- Abstract summary: We propose a step-by-step planning approach for intermediate solution generation.
Our approach first plans the next step by predicting the necessary math operation needed to proceed.
Experiments on the GSM8K dataset demonstrate that our approach improves the accuracy and interpretability of the solution.
- Score: 6.232269207752905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Solutions to math word problems (MWPs) with step-by-step explanations are
valuable, especially in education, to help students better comprehend
problem-solving strategies. Most existing approaches only focus on obtaining
the final correct answer. A few recent approaches leverage intermediate
solution steps to improve final answer correctness but often cannot generate
coherent steps with a clear solution strategy. Contrary to existing work, we
focus on improving the correctness and coherence of the intermediate solutions
steps. We propose a step-by-step planning approach for intermediate solution
generation, which strategically plans the generation of the next solution step
based on the MWP and the previous solution steps. Our approach first plans the
next step by predicting the necessary math operation needed to proceed, given
history steps, then generates the next step, token-by-token, by prompting a
language model with the predicted math operation. Experiments on the GSM8K
dataset demonstrate that our approach improves the accuracy and
interpretability of the solution on both automatic metrics and human
evaluation.
Related papers
- MathMistake Checker: A Comprehensive Demonstration for Step-by-Step Math Problem Mistake Finding by Prompt-Guided LLMs [13.756898876556455]
We propose a novel system, MathMistake Checker, to automate step-by-step mistake finding in mathematical problems with lengthy answers.
The system aims to simplify grading, increase efficiency, and enhance learning experiences from a pedagogical perspective.
arXiv Detail & Related papers (2025-03-06T10:19:01Z) - Step-KTO: Optimizing Mathematical Reasoning through Stepwise Binary Feedback [94.25162866972077]
Step-KTO is a training framework that combines process-level and outcome-level binary feedback.
Our experiments show that Step-KTO significantly improves both final answer accuracy and the quality of intermediate reasoning steps.
arXiv Detail & Related papers (2025-01-18T15:38:03Z) - Learning to Optimize for Mixed-Integer Non-linear Programming [20.469394148261838]
Mixed-integer non-NLP programs (MINLPs) arise in various domains, such as energy systems and transportation, but are notoriously difficult to solve.
Recent advances in machine learning have led to remarkable successes in optimization, area broadly known as learning to optimize.
We propose two differentiable correction layers that generate integer outputs while preserving gradient.
arXiv Detail & Related papers (2024-10-14T20:14:39Z) - Do Language Models Exhibit the Same Cognitive Biases in Problem Solving as Human Learners? [140.9751389452011]
We study the biases of large language models (LLMs) in relation to those known in children when solving arithmetic word problems.
We generate a novel set of word problems for each of these tests, using a neuro-symbolic approach that enables fine-grained control over the problem features.
arXiv Detail & Related papers (2024-01-31T18:48:20Z) - SEGO: Sequential Subgoal Optimization for Mathematical Problem-Solving [64.38649623473626]
Large Language Models (LLMs) have driven substantial progress in artificial intelligence.
We propose a novel framework called textbfSEquential subtextbfGoal textbfOptimization (SEGO) to enhance LLMs' ability to solve mathematical problems.
arXiv Detail & Related papers (2023-10-19T17:56:40Z) - Thought Propagation: An Analogical Approach to Complex Reasoning with Large Language Models [62.96551299003463]
We propose textbftextitThought Propagation (TP) to enhance the complex reasoning ability of Large Language Models.
TP first prompts LLMs to propose and solve a set of analogous problems that are related to the input one.
TP reuses the results of analogous problems to directly yield a new solution or derive a knowledge-intensive plan for execution to amend the initial solution obtained from scratch.
arXiv Detail & Related papers (2023-10-06T01:40:09Z) - Evaluating and Improving Tool-Augmented Computation-Intensive Math
Reasoning [75.74103236299477]
Chain-of-thought prompting(CoT) and tool augmentation have been validated as effective practices for improving large language models.
We propose a new approach that can deliberate the reasoning steps with tool interfaces, namely textbfDELI.
Experimental results on CARP and six other datasets show that the proposed DELI mostly outperforms competitive baselines.
arXiv Detail & Related papers (2023-06-04T17:02:59Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
We present an end-to-end method to learn the proximal operator across non-family problems.
We show that for weakly-ized objectives and under mild conditions, the method converges globally.
arXiv Detail & Related papers (2022-01-28T05:53:28Z) - Math Operation Embeddings for Open-ended Solution Analysis and Feedback [2.905751301655124]
We use a dataset that contains student solution steps in the Cognitive Tutor system to learn implicit and explicit representations of math operations.
Experimental results show that our learned math operation generalize representations well across different data distributions.
arXiv Detail & Related papers (2021-04-25T02:09:17Z) - Submodular Meta-Learning [43.15332631500541]
We introduce a discrete variant of the meta-learning framework to improve performance on future tasks.
Our approach aims at using prior data, i.e., previously visited tasks, to train a proper initial solution set.
We show that our framework leads to a significant reduction in computational complexity in solving the new tasks while incurring a small performance loss.
arXiv Detail & Related papers (2020-07-11T21:02:48Z) - Meta Cyclical Annealing Schedule: A Simple Approach to Avoiding
Meta-Amortization Error [50.83356836818667]
We develop a novel meta-regularization objective using it cyclical annealing schedule and it maximum mean discrepancy (MMD) criterion.
The experimental results show that our approach substantially outperforms standard meta-learning algorithms.
arXiv Detail & Related papers (2020-03-04T04:43:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.