Versatile Backdoor Attack with Visible, Semantic, Sample-Specific, and Compatible Triggers
- URL: http://arxiv.org/abs/2306.00816v4
- Date: Mon, 24 Jun 2024 15:40:01 GMT
- Title: Versatile Backdoor Attack with Visible, Semantic, Sample-Specific, and Compatible Triggers
- Authors: Ruotong Wang, Hongrui Chen, Zihao Zhu, Li Liu, Baoyuan Wu,
- Abstract summary: We propose a novel trigger called the textbfVisible, textbfSemantic, textbfSample-language, and textbfCompatible (VSSC) trigger.
VSSC trigger achieves effective, stealthy and robust simultaneously, which can also be effectively deployed in the physical scenario using corresponding objects.
- Score: 38.67988745745853
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) can be manipulated to exhibit specific behaviors when exposed to specific trigger patterns, without affecting their performance on benign samples, dubbed \textit{backdoor attack}. Currently, implementing backdoor attacks in physical scenarios still faces significant challenges. Physical attacks are labor-intensive and time-consuming, and the triggers are selected in a manual and heuristic way. Moreover, expanding digital attacks to physical scenarios faces many challenges due to their sensitivity to visual distortions and the absence of counterparts in the real world. To address these challenges, we define a novel trigger called the \textbf{V}isible, \textbf{S}emantic, \textbf{S}ample-Specific, and \textbf{C}ompatible (VSSC) trigger, to achieve effective, stealthy and robust simultaneously, which can also be effectively deployed in the physical scenario using corresponding objects. To implement the VSSC trigger, we propose an automated pipeline comprising three modules: a trigger selection module that systematically identifies suitable triggers leveraging large language models, a trigger insertion module that employs generative models to seamlessly integrate triggers into images, and a quality assessment module that ensures the natural and successful insertion of triggers through vision-language models. Extensive experimental results and analysis validate the effectiveness, stealthiness, and robustness of the VSSC trigger. It can not only maintain robustness under visual distortions but also demonstrates strong practicality in the physical scenario. We hope that the proposed VSSC trigger and implementation approach could inspire future studies on designing more practical triggers in backdoor attacks.
Related papers
- Twin Trigger Generative Networks for Backdoor Attacks against Object Detection [14.578800906364414]
Object detectors, which are widely used in real-world applications, are vulnerable to backdoor attacks.
Most research on backdoor attacks has focused on image classification, with limited investigation into object detection.
We propose novel twin trigger generative networks to generate invisible triggers for implanting backdoors into models during training, and visible triggers for steady activation during inference.
arXiv Detail & Related papers (2024-11-23T03:46:45Z) - Hide in Thicket: Generating Imperceptible and Rational Adversarial
Perturbations on 3D Point Clouds [62.94859179323329]
Adrial attack methods based on point manipulation for 3D point cloud classification have revealed the fragility of 3D models.
We propose a novel shape-based adversarial attack method, HiT-ADV, which conducts a two-stage search for attack regions based on saliency and imperceptibility perturbation scores.
We propose that by employing benign resampling and benign rigid transformations, we can further enhance physical adversarial strength with little sacrifice to imperceptibility.
arXiv Detail & Related papers (2024-03-08T12:08:06Z) - Neural Exec: Learning (and Learning from) Execution Triggers for Prompt Injection Attacks [20.058741696160798]
We introduce a new family of prompt injection attacks, termed Neural Exec.
We show that it is possible to conceptualize the creation of execution triggers as a differentiable search problem and use learning-based methods to autonomously generate them.
arXiv Detail & Related papers (2024-03-06T15:40:30Z) - VL-Trojan: Multimodal Instruction Backdoor Attacks against
Autoregressive Visual Language Models [65.23688155159398]
Autoregressive Visual Language Models (VLMs) showcase impressive few-shot learning capabilities in a multimodal context.
Recently, multimodal instruction tuning has been proposed to further enhance instruction-following abilities.
Adversaries can implant a backdoor by injecting poisoned samples with triggers embedded in instructions or images.
We propose a multimodal instruction backdoor attack, namely VL-Trojan.
arXiv Detail & Related papers (2024-02-21T14:54:30Z) - Backdoor Attacks Against Deep Image Compression via Adaptive Frequency
Trigger [106.10954454667757]
We present a novel backdoor attack with multiple triggers against learned image compression models.
Motivated by the widely used discrete cosine transform (DCT) in existing compression systems and standards, we propose a frequency-based trigger injection model.
arXiv Detail & Related papers (2023-02-28T15:39:31Z) - Exploring the Universal Vulnerability of Prompt-based Learning Paradigm [21.113683206722207]
We find that prompt-based learning bridges the gap between pre-training and fine-tuning, and works effectively under the few-shot setting.
However, we find that this learning paradigm inherits the vulnerability from the pre-training stage, where model predictions can be misled by inserting certain triggers into the text.
We explore this universal vulnerability by either injecting backdoor triggers or searching for adversarial triggers on pre-trained language models using only plain text.
arXiv Detail & Related papers (2022-04-11T16:34:10Z) - Evaluating the Robustness of Semantic Segmentation for Autonomous
Driving against Real-World Adversarial Patch Attacks [62.87459235819762]
In a real-world scenario like autonomous driving, more attention should be devoted to real-world adversarial examples (RWAEs)
This paper presents an in-depth evaluation of the robustness of popular SS models by testing the effects of both digital and real-world adversarial patches.
arXiv Detail & Related papers (2021-08-13T11:49:09Z) - Discriminator-Free Generative Adversarial Attack [87.71852388383242]
Agenerative-based adversarial attacks can get rid of this limitation.
ASymmetric Saliency-based Auto-Encoder (SSAE) generates the perturbations.
The adversarial examples generated by SSAE not only make thewidely-used models collapse, but also achieves good visual quality.
arXiv Detail & Related papers (2021-07-20T01:55:21Z) - Selective and Features based Adversarial Example Detection [12.443388374869745]
Security-sensitive applications that relay on Deep Neural Networks (DNNs) are vulnerable to small perturbations crafted to generate Adversarial Examples (AEs)
We propose a novel unsupervised detection mechanism that uses the selective prediction, processing model layers outputs, and knowledge transfer concepts in a multi-task learning setting.
Experimental results show that the proposed approach achieves comparable results to the state-of-the-art methods against tested attacks in white box scenario and better results in black and gray boxes scenarios.
arXiv Detail & Related papers (2021-03-09T11:06:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.