TMI! Finetuned Models Leak Private Information from their Pretraining Data
- URL: http://arxiv.org/abs/2306.01181v3
- Date: Wed, 16 Oct 2024 18:55:39 GMT
- Title: TMI! Finetuned Models Leak Private Information from their Pretraining Data
- Authors: John Abascal, Stanley Wu, Alina Oprea, Jonathan Ullman,
- Abstract summary: We propose a new membership-inference threat model where the adversary only has access to the finetuned model.
We evaluate $textbfTMI$ on both vision and natural language tasks across multiple transfer learning settings.
An open-source implementation of $textbfTMI$ can be found on GitHub.
- Score: 5.150344987657356
- License:
- Abstract: Transfer learning has become an increasingly popular technique in machine learning as a way to leverage a pretrained model trained for one task to assist with building a finetuned model for a related task. This paradigm has been especially popular for $\textit{privacy}$ in machine learning, where the pretrained model is considered public, and only the data for finetuning is considered sensitive. However, there are reasons to believe that the data used for pretraining is still sensitive, making it essential to understand how much information the finetuned model leaks about the pretraining data. In this work we propose a new membership-inference threat model where the adversary only has access to the finetuned model and would like to infer the membership of the pretraining data. To realize this threat model, we implement a novel metaclassifier-based attack, $\textbf{TMI}$, that leverages the influence of memorized pretraining samples on predictions in the downstream task. We evaluate $\textbf{TMI}$ on both vision and natural language tasks across multiple transfer learning settings, including finetuning with differential privacy. Through our evaluation, we find that $\textbf{TMI}$ can successfully infer membership of pretraining examples using query access to the finetuned model. An open-source implementation of $\textbf{TMI}$ can be found on GitHub: https://github.com/johnmath/tmi-pets24.
Related papers
- Forget to Flourish: Leveraging Machine-Unlearning on Pretrained Language Models for Privacy Leakage [12.892449128678516]
Fine-tuning language models on private data for downstream applications poses significant privacy risks.
Several popular community platforms now offer convenient distribution of a large variety of pre-trained models.
We introduce a novel poisoning technique that uses model-unlearning as an attack tool.
arXiv Detail & Related papers (2024-08-30T15:35:09Z) - Model Inversion Robustness: Can Transfer Learning Help? [27.883074562565877]
Model Inversion (MI) attacks aim to reconstruct private training data by abusing access to machine learning models.
We propose Transfer Learning-based Defense against Model Inversion (TL-DMI) to render MI-robust models.
Our method achieves state-of-the-art (SOTA) MI robustness without bells and whistles.
arXiv Detail & Related papers (2024-05-09T07:24:28Z) - LMEraser: Large Model Unlearning through Adaptive Prompt Tuning [21.141664917477257]
LMEraser takes a divide-and-conquer strategy with a prompt tuning architecture to isolate data influence.
Experiments demonstrate that LMEraser achieves a $100$-fold reduction in unlearning costs without compromising accuracy.
arXiv Detail & Related papers (2024-04-17T04:08:38Z) - Pandora's White-Box: Precise Training Data Detection and Extraction in Large Language Models [4.081098869497239]
We develop state-of-the-art privacy attacks against Large Language Models (LLMs)
New membership inference attacks (MIAs) against pretrained LLMs perform hundreds of times better than baseline attacks.
In fine-tuning, we find that a simple attack based on the ratio of the loss between the base and fine-tuned models is able to achieve near-perfect MIA performance.
arXiv Detail & Related papers (2024-02-26T20:41:50Z) - Don't Memorize; Mimic The Past: Federated Class Incremental Learning
Without Episodic Memory [36.4406505365313]
This paper presents a framework for federated class incremental learning that utilizes a generative model to synthesize samples from past distributions instead of storing part of past data.
The generative model is trained on the server using data-free methods at the end of each task without requesting data from clients.
arXiv Detail & Related papers (2023-07-02T07:06:45Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
Consider making a prediction over new test data without any opportunity to learn from a training set of labelled data.
Give access to a set of expert models and their predictions alongside some limited information about the dataset used to train them.
arXiv Detail & Related papers (2022-10-11T10:20:31Z) - CANIFE: Crafting Canaries for Empirical Privacy Measurement in Federated
Learning [77.27443885999404]
Federated Learning (FL) is a setting for training machine learning models in distributed environments.
We propose a novel method, CANIFE, that uses carefully crafted samples by a strong adversary to evaluate the empirical privacy of a training round.
arXiv Detail & Related papers (2022-10-06T13:30:16Z) - Datamodels: Predicting Predictions from Training Data [86.66720175866415]
We present a conceptual framework, datamodeling, for analyzing the behavior of a model class in terms of the training data.
We show that even simple linear datamodels can successfully predict model outputs.
arXiv Detail & Related papers (2022-02-01T18:15:24Z) - bert2BERT: Towards Reusable Pretrained Language Models [51.078081486422896]
We propose bert2BERT, which can effectively transfer the knowledge of an existing smaller pre-trained model to a large model.
bert2BERT saves about 45% and 47% computational cost of pre-training BERT_BASE and GPT_BASE by reusing the models of almost their half sizes.
arXiv Detail & Related papers (2021-10-14T04:05:25Z) - LogME: Practical Assessment of Pre-trained Models for Transfer Learning [80.24059713295165]
The Logarithm of Maximum Evidence (LogME) can be used to assess pre-trained models for transfer learning.
Compared to brute-force fine-tuning, LogME brings over $3000times$ speedup in wall-clock time.
arXiv Detail & Related papers (2021-02-22T13:58:11Z) - Knowledge-Enriched Distributional Model Inversion Attacks [49.43828150561947]
Model inversion (MI) attacks are aimed at reconstructing training data from model parameters.
We present a novel inversion-specific GAN that can better distill knowledge useful for performing attacks on private models from public data.
Our experiments show that the combination of these techniques can significantly boost the success rate of the state-of-the-art MI attacks by 150%.
arXiv Detail & Related papers (2020-10-08T16:20:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.