LyricSIM: A novel Dataset and Benchmark for Similarity Detection in
Spanish Song LyricS
- URL: http://arxiv.org/abs/2306.01325v1
- Date: Fri, 2 Jun 2023 07:48:20 GMT
- Title: LyricSIM: A novel Dataset and Benchmark for Similarity Detection in
Spanish Song LyricS
- Authors: Alejandro Benito-Santos, Adri\'an Ghajari, Pedro Hern\'andez, V\'ictor
Fresno, Salvador Ros, Elena Gonz\'alez-Blanco
- Abstract summary: We present a new dataset and benchmark tailored to the task of semantic similarity in song lyrics.
Our dataset, originally consisting of 2775 pairs of Spanish songs, was annotated in a collective annotation experiment by 63 native annotators.
- Score: 52.77024349608834
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this paper, we present a new dataset and benchmark tailored to the task of
semantic similarity in song lyrics. Our dataset, originally consisting of 2775
pairs of Spanish songs, was annotated in a collective annotation experiment by
63 native annotators. After collecting and refining the data to ensure a high
degree of consensus and data integrity, we obtained 676 high-quality annotated
pairs that were used to evaluate the performance of various state-of-the-art
monolingual and multilingual language models. Consequently, we established
baseline results that we hope will be useful to the community in all future
academic and industrial applications conducted in this context.
Related papers
- Multilingual Coreference Resolution in Low-resource South Asian Languages [36.31301773167754]
We introduce a Translated dataset for Multilingual Coreference Resolution (TransMuCoRes) in 31 South Asian languages.
Nearly all of the predicted translations successfully pass a sanity check, and 75% of English references align with their predicted translations.
This study is the first to evaluate an end-to-end coreference resolution model on a Hindi golden set.
arXiv Detail & Related papers (2024-02-21T07:05:51Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
We propose a generative model for learning multilingual text embeddings.
Our model operates on parallel data in $N$ languages.
We evaluate this method on a suite of tasks including semantic similarity, bitext mining, and cross-lingual question retrieval.
arXiv Detail & Related papers (2022-12-21T02:41:40Z) - FRMT: A Benchmark for Few-Shot Region-Aware Machine Translation [64.9546787488337]
We present FRMT, a new dataset and evaluation benchmark for Few-shot Region-aware Machine Translation.
The dataset consists of professional translations from English into two regional variants each of Portuguese and Mandarin Chinese.
arXiv Detail & Related papers (2022-10-01T05:02:04Z) - Czech Dataset for Cross-lingual Subjectivity Classification [13.70633147306388]
We introduce a new Czech subjectivity dataset of 10k manually annotated subjective and objective sentences from movie reviews and descriptions.
Two annotators annotated the dataset reaching 0.83 of the Cohen's kappa inter-annotator agreement.
We fine-tune five pre-trained BERT-like models to set a monolingual baseline for the new dataset and we achieve 93.56% of accuracy.
arXiv Detail & Related papers (2022-04-29T07:31:46Z) - Neural Label Search for Zero-Shot Multi-Lingual Extractive Summarization [80.94424037751243]
In zero-shot multilingual extractive text summarization, a model is typically trained on English dataset and then applied on summarization datasets of other languages.
We propose NLS (Neural Label Search for Summarization), which jointly learns hierarchical weights for different sets of labels together with our summarization model.
We conduct multilingual zero-shot summarization experiments on MLSUM and WikiLingua datasets, and we achieve state-of-the-art results using both human and automatic evaluations.
arXiv Detail & Related papers (2022-04-28T14:02:16Z) - IGLUE: A Benchmark for Transfer Learning across Modalities, Tasks, and
Languages [87.5457337866383]
We introduce the Image-Grounded Language Understanding Evaluation benchmark.
IGLUE brings together visual question answering, cross-modal retrieval, grounded reasoning, and grounded entailment tasks across 20 diverse languages.
We find that translate-test transfer is superior to zero-shot transfer and that few-shot learning is hard to harness for many tasks.
arXiv Detail & Related papers (2022-01-27T18:53:22Z) - Cross-language Sentence Selection via Data Augmentation and Rationale
Training [22.106577427237635]
It uses data augmentation and negative sampling techniques on noisy parallel sentence data to learn a cross-lingual embedding-based query relevance model.
Results show that this approach performs as well as or better than multiple state-of-the-art machine translation + monolingual retrieval systems trained on the same parallel data.
arXiv Detail & Related papers (2021-06-04T07:08:47Z) - XL-WiC: A Multilingual Benchmark for Evaluating Semantic
Contextualization [98.61159823343036]
We present the Word-in-Context dataset (WiC) for assessing the ability to correctly model distinct meanings of a word.
We put forward a large multilingual benchmark, XL-WiC, featuring gold standards in 12 new languages.
Experimental results show that even when no tagged instances are available for a target language, models trained solely on the English data can attain competitive performance.
arXiv Detail & Related papers (2020-10-13T15:32:00Z) - BabelEnconding at SemEval-2020 Task 3: Contextual Similarity as a
Combination of Multilingualism and Language Models [0.5276232626689568]
This paper describes the system submitted by our team (BabelEnconding) to SemEval-2020 Task 3: Predicting the Graded Effect of Context in Word Similarity.
arXiv Detail & Related papers (2020-08-19T13:46:37Z) - Enhancing lexical-based approach with external knowledge for Vietnamese
multiple-choice machine reading comprehension [2.5199066832791535]
We construct a dataset which consists of 2,783 pairs of multiple-choice questions and answers based on 417 Vietnamese texts.
We propose a lexical-based MRC method that utilizes semantic similarity measures and external knowledge sources to analyze questions and extract answers from the given text.
Our proposed method achieves 61.81% by accuracy, which is 5.51% higher than the best baseline model.
arXiv Detail & Related papers (2020-01-16T08:09:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.