Bilevel Fast Scene Adaptation for Low-Light Image Enhancement
- URL: http://arxiv.org/abs/2306.01343v1
- Date: Fri, 2 Jun 2023 08:16:21 GMT
- Title: Bilevel Fast Scene Adaptation for Low-Light Image Enhancement
- Authors: Long Ma, Dian Jin, Nan An, Jinyuan Liu, Xin Fan, Risheng Liu
- Abstract summary: Enhancing images in low-light scenes is a challenging but widely concerned task in the computer vision.
Main obstacle lies in the modeling conundrum from distribution discrepancy across different scenes.
We introduce the bilevel paradigm to model the above latent correspondence.
A bilevel learning framework is constructed to endow the scene-irrelevant generality of the encoder towards diverse scenes.
- Score: 50.639332885989255
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Enhancing images in low-light scenes is a challenging but widely concerned
task in the computer vision. The mainstream learning-based methods mainly
acquire the enhanced model by learning the data distribution from the specific
scenes, causing poor adaptability (even failure) when meeting real-world
scenarios that have never been encountered before. The main obstacle lies in
the modeling conundrum from distribution discrepancy across different scenes.
To remedy this, we first explore relationships between diverse low-light scenes
based on statistical analysis, i.e., the network parameters of the encoder
trained in different data distributions are close. We introduce the bilevel
paradigm to model the above latent correspondence from the perspective of
hyperparameter optimization. A bilevel learning framework is constructed to
endow the scene-irrelevant generality of the encoder towards diverse scenes
(i.e., freezing the encoder in the adaptation and testing phases). Further, we
define a reinforced bilevel learning framework to provide a meta-initialization
for scene-specific decoder to further ameliorate visual quality. Moreover, to
improve the practicability, we establish a Retinex-induced architecture with
adaptive denoising and apply our built learning framework to acquire its
parameters by using two training losses including supervised and unsupervised
forms. Extensive experimental evaluations on multiple datasets verify our
adaptability and competitive performance against existing state-of-the-art
works. The code and datasets will be available at
https://github.com/vis-opt-group/BL.
Related papers
- Data Adaptive Traceback for Vision-Language Foundation Models in Image Classification [34.37262622415682]
We propose a new adaptation framework called Data Adaptive Traceback.
Specifically, we utilize a zero-shot-based method to extract the most downstream task-related subset of the pre-training data.
We adopt a pseudo-label-based semi-supervised technique to reuse the pre-training images and a vision-language contrastive learning method to address the confirmation bias issue in semi-supervised learning.
arXiv Detail & Related papers (2024-07-11T18:01:58Z) - TrACT: A Training Dynamics Aware Contrastive Learning Framework for Long-tail Trajectory Prediction [7.3292387742640415]
We propose to incorporate richer training dynamics information into a prototypical contrastive learning framework.
We conduct empirical evaluations of our approach using two large-scale naturalistic datasets.
arXiv Detail & Related papers (2024-04-18T23:12:46Z) - Reusable Architecture Growth for Continual Stereo Matching [92.36221737921274]
We introduce a Reusable Architecture Growth (RAG) framework to learn new scenes continually in both supervised and self-supervised manners.
RAG can maintain high reusability during growth by reusing previous units while obtaining good performance.
We also present a Scene Router module to adaptively select the scene-specific architecture path at inference.
arXiv Detail & Related papers (2024-03-30T13:24:58Z) - Learning from One Continuous Video Stream [70.30084026960819]
We introduce a framework for online learning from a single continuous video stream.
This poses great challenges given the high correlation between consecutive video frames.
We employ pixel-to-pixel modelling as a practical and flexible way to switch between pre-training and single-stream evaluation.
arXiv Detail & Related papers (2023-12-01T14:03:30Z) - Class Incremental Learning with Pre-trained Vision-Language Models [59.15538370859431]
We propose an approach to exploiting pre-trained vision-language models (e.g. CLIP) that enables further adaptation.
Experiments on several conventional benchmarks consistently show a significant margin of improvement over the current state-of-the-art.
arXiv Detail & Related papers (2023-10-31T10:45:03Z) - Bilevel Generative Learning for Low-Light Vision [64.77933848939327]
We propose a generic low-light vision solution by introducing a generative block to convert data from the RAW to the RGB domain.
This novel approach connects diverse vision problems by explicitly depicting data generation, which is the first in the field.
We develop two types of learning strategies targeting different goals, namely low cost and high accuracy, to acquire a new bilevel generative learning paradigm.
arXiv Detail & Related papers (2023-08-07T07:59:56Z) - Hierarchical Semantic Contrast for Scene-aware Video Anomaly Detection [14.721615285883423]
We propose a hierarchical semantic contrast (HSC) method to learn a scene-aware VAD model from normal videos.
This hierarchical semantic contrast strategy helps to deal with the diversity of normal patterns and also increases their discrimination ability.
arXiv Detail & Related papers (2023-03-23T05:53:34Z) - Imposing Consistency for Optical Flow Estimation [73.53204596544472]
Imposing consistency through proxy tasks has been shown to enhance data-driven learning.
This paper introduces novel and effective consistency strategies for optical flow estimation.
arXiv Detail & Related papers (2022-04-14T22:58:30Z) - Free Lunch for Co-Saliency Detection: Context Adjustment [14.688461235328306]
We propose a "cost-free" group-cut-paste (GCP) procedure to leverage images from off-the-shelf saliency detection datasets and synthesize new samples.
We collect a novel dataset called Context Adjustment Training. The two variants of our dataset, i.e., CAT and CAT+, consist of 16,750 and 33,500 images, respectively.
arXiv Detail & Related papers (2021-08-04T14:51:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.