Knowledge Graph Reasoning over Entities and Numerical Values
- URL: http://arxiv.org/abs/2306.01399v1
- Date: Fri, 2 Jun 2023 09:46:29 GMT
- Title: Knowledge Graph Reasoning over Entities and Numerical Values
- Authors: Jiaxin Bai, Chen Luo, Zheng Li, Qingyu Yin, Bing Yin, Yangqiu Song
- Abstract summary: We introduce new numerical variables and operations to describe queries involving numerical attribute values.
We also propose the framework of Number Reasoning Network (NRN) for encoding entities and numerical values into separate encoding structures.
- Score: 48.67312700426019
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: A complex logic query in a knowledge graph refers to a query expressed in
logic form that conveys a complex meaning, such as where did the Canadian
Turing award winner graduate from? Knowledge graph reasoning-based
applications, such as dialogue systems and interactive search engines, rely on
the ability to answer complex logic queries as a fundamental task. In most
knowledge graphs, edges are typically used to either describe the relationships
between entities or their associated attribute values. An attribute value can
be in categorical or numerical format, such as dates, years, sizes, etc.
However, existing complex query answering (CQA) methods simply treat numerical
values in the same way as they treat entities. This can lead to difficulties in
answering certain queries, such as which Australian Pulitzer award winner is
born before 1927, and which drug is a pain reliever and has fewer side effects
than Paracetamol. In this work, inspired by the recent advances in numerical
encoding and knowledge graph reasoning, we propose numerical complex query
answering. In this task, we introduce new numerical variables and operations to
describe queries involving numerical attribute values. To address the
difference between entities and numerical values, we also propose the framework
of Number Reasoning Network (NRN) for alternatively encoding entities and
numerical values into separate encoding structures. During the numerical
encoding process, NRN employs a parameterized density function to encode the
distribution of numerical values. During the entity encoding process, NRN uses
established query encoding methods for the original CQA problem. Experimental
results show that NRN consistently improves various query encoding methods on
three different knowledge graphs and achieves state-of-the-art results.
Related papers
- Pathformer: Recursive Path Query Encoding for Complex Logical Query Answering [20.521886749524814]
We propose a neural one-point embedding method called Pathformer based on the tree-like computation graph, i.e., query tree.
Specifically, Pathformer decomposes the query computation tree into path query sequences by branches.
This allows Pathformer to fully utilize future context information to explicitly model the complex interactions between various parts of a path query.
arXiv Detail & Related papers (2024-06-21T06:02:58Z) - Conversational Semantic Parsing using Dynamic Context Graphs [68.72121830563906]
We consider the task of conversational semantic parsing over general purpose knowledge graphs (KGs) with millions of entities, and thousands of relation-types.
We focus on models which are capable of interactively mapping user utterances into executable logical forms.
arXiv Detail & Related papers (2023-05-04T16:04:41Z) - Sequential Query Encoding For Complex Query Answering on Knowledge
Graphs [31.40820604209387]
We propose sequential query encoding (SQE) as an alternative to encode queries for knowledge graph (KG) reasoning.
SQE first uses a search-based algorithm to linearize the computational graph to a sequence of tokens and then uses a sequence encoder to compute its vector representation.
Despite its simplicity, SQE demonstrates state-of-the-art neural query encoding performance on FB15k, FB15k-237, and NELL.
arXiv Detail & Related papers (2023-02-25T16:33:53Z) - Logical Message Passing Networks with One-hop Inference on Atomic
Formulas [57.47174363091452]
We propose a framework for complex query answering that decomposes the Knowledge Graph embeddings from neural set operators.
On top of the query graph, we propose the Logical Message Passing Neural Network (LMPNN) that connects the local one-hop inferences on atomic formulas to the global logical reasoning.
Our approach yields the new state-of-the-art neural CQA model.
arXiv Detail & Related papers (2023-01-21T02:34:06Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
Multi-hop Question Answering over Knowledge Graph(KGQA) aims to find the answer entities that are multiple hops away from the topic entities mentioned in a natural language question.
We propose UniKGQA, a novel approach for multi-hop KGQA task, by unifying retrieval and reasoning in both model architecture and parameter learning.
arXiv Detail & Related papers (2022-12-02T04:08:09Z) - Uni-Parser: Unified Semantic Parser for Question Answering on Knowledge
Base and Database [86.03294330305097]
We propose a unified semantic element for question answering (QA) on both knowledge bases (KB) and databases (DB)
We introduce the primitive (relation and entity in KB, table name, column name and cell value in DB) as an essential element in our framework.
We leverage the generator to predict final logical forms by altering and composing topranked primitives with different operations.
arXiv Detail & Related papers (2022-11-09T19:33:27Z) - Query2Particles: Knowledge Graph Reasoning with Particle Embeddings [49.64006979045662]
We propose a query embedding method to answer complex logical queries on knowledge graphs with missing edges.
The answer entities are selected according to the similarities between the entity embeddings and the query embedding.
A complex KG query answering method, Q2P, is proposed to retrieve diverse answers from different areas over the embedding space.
arXiv Detail & Related papers (2022-04-27T11:16:08Z) - Improving Numerical Reasoning Skills in the Modular Approach for Complex
Question Answering on Text [39.22253030039486]
A successful approach to complex question answering (CQA) on text, Neural Module Networks (NMNs), follows the programmer-interpreter paradigm.
We propose effective techniques to improve NMNs' numerical reasoning capabilities by making the interpreter question-aware.
arXiv Detail & Related papers (2021-09-06T08:34:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.