Implicit Regularization in Feedback Alignment Learning Mechanisms for Neural Networks
- URL: http://arxiv.org/abs/2306.01870v2
- Date: Tue, 4 Jun 2024 00:42:04 GMT
- Title: Implicit Regularization in Feedback Alignment Learning Mechanisms for Neural Networks
- Authors: Zachary Robertson, Oluwasanmi Koyejo,
- Abstract summary: Feedback Alignment (FA) methods are biologically inspired local learning rules for training neural networks with reduced communication between layers.
This study introduces a unified framework elucidating the operational principles behind alignment in FA.
Overall, these theoretical and practical advancements improve interpretability of bio-plausible learning rules and provide groundwork for developing enhanced FA algorithms.
- Score: 8.324038619175266
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Feedback Alignment (FA) methods are biologically inspired local learning rules for training neural networks with reduced communication between layers. While FA has potential applications in distributed and privacy-aware ML, limitations in multi-class classification and lack of theoretical understanding of the alignment mechanism have constrained its impact. This study introduces a unified framework elucidating the operational principles behind alignment in FA. Our key contributions include: (1) a novel conservation law linking changes in synaptic weights to implicit regularization that maintains alignment with the gradient, with support from experiments, (2) sufficient conditions for convergence based on the concept of alignment dominance, and (3) empirical analysis showing better alignment can enhance FA performance on complex multi-class tasks. Overall, these theoretical and practical advancements improve interpretability of bio-plausible learning rules and provide groundwork for developing enhanced FA algorithms.
Related papers
- Neuro-symbolic Weak Supervision: Theory and Semantics [5.455744338342196]
We propose a semantics for neuro-symbolic framework that integrates Inductive Logic Programming (ILP)
ILP defines a logical hypothesis space for label transitions, clarifies semantics, and establishes interpretable performance standards.
This hybrid approach improves robustness, transparency, and accountability in weakly supervised settings.
arXiv Detail & Related papers (2025-03-24T10:02:51Z) - Layer-wise Feedback Propagation [53.00944147633484]
We present Layer-wise Feedback Propagation (LFP), a novel training approach for neural-network-like predictors.
LFP assigns rewards to individual connections based on their respective contributions to solving a given task.
We demonstrate its effectiveness in achieving comparable performance to gradient descent on various models and datasets.
arXiv Detail & Related papers (2023-08-23T10:48:28Z) - The Influence of Learning Rule on Representation Dynamics in Wide Neural
Networks [18.27510863075184]
We analyze infinite-width deep gradient networks trained with feedback alignment (FA), direct feedback alignment (DFA), and error modulated Hebbian learning (Hebb)
We show that, for each of these learning rules, the evolution of the output function at infinite width is governed by a time varying effective neural tangent kernel (eNTK)
In the lazy training limit, this eNTK is static and does not evolve, while in the rich mean-field regime this kernel's evolution can be determined self-consistently with dynamical mean field theory (DMFT)
arXiv Detail & Related papers (2022-10-05T11:33:40Z) - Rank Diminishing in Deep Neural Networks [71.03777954670323]
Rank of neural networks measures information flowing across layers.
It is an instance of a key structural condition that applies across broad domains of machine learning.
For neural networks, however, the intrinsic mechanism that yields low-rank structures remains vague and unclear.
arXiv Detail & Related papers (2022-06-13T12:03:32Z) - Learning Dynamics and Generalization in Reinforcement Learning [59.530058000689884]
We show theoretically that temporal difference learning encourages agents to fit non-smooth components of the value function early in training.
We show that neural networks trained using temporal difference algorithms on dense reward tasks exhibit weaker generalization between states than randomly networks and gradient networks trained with policy methods.
arXiv Detail & Related papers (2022-06-05T08:49:16Z) - Minimizing Control for Credit Assignment with Strong Feedback [65.59995261310529]
Current methods for gradient-based credit assignment in deep neural networks need infinitesimally small feedback signals.
We combine strong feedback influences on neural activity with gradient-based learning and show that this naturally leads to a novel view on neural network optimization.
We show that the use of strong feedback in DFC allows learning forward and feedback connections simultaneously, using a learning rule fully local in space and time.
arXiv Detail & Related papers (2022-04-14T22:06:21Z) - BioLeaF: A Bio-plausible Learning Framework for Training of Spiking
Neural Networks [4.698975219970009]
We propose a new bio-plausible learning framework consisting of two components: a new architecture, and its supporting learning rules.
Under our microcircuit architecture, we employ the Spike-Timing-Dependent-Plasticity (STDP) rule operating in local compartments to update synaptic weights.
Our experiments show that the proposed framework demonstrates learning accuracy comparable to BP-based rules.
arXiv Detail & Related papers (2021-11-14T10:32:22Z) - Credit Assignment in Neural Networks through Deep Feedback Control [59.14935871979047]
Deep Feedback Control (DFC) is a new learning method that uses a feedback controller to drive a deep neural network to match a desired output target and whose control signal can be used for credit assignment.
The resulting learning rule is fully local in space and time and approximates Gauss-Newton optimization for a wide range of connectivity patterns.
To further underline its biological plausibility, we relate DFC to a multi-compartment model of cortical pyramidal neurons with a local voltage-dependent synaptic plasticity rule, consistent with recent theories of dendritic processing.
arXiv Detail & Related papers (2021-06-15T05:30:17Z) - Complementary Structure-Learning Neural Networks for Relational
Reasoning [3.528645587678267]
We show that pattern separation in the hippocampus allows rapid learning in novel environments.
slower learning in neocortex accumulates small weight changes to extract systematic structure from well-learned environments.
arXiv Detail & Related papers (2021-05-19T06:25:21Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
This paper focuses on an alternative way of defining Neural Networks, that is different from the majority of existing approaches.
The structure of the neural architecture is defined by means of a special class of constraints that are extended also to the interaction with data.
The proposed theory is cast into the time domain, in which data are presented to the network in an ordered manner.
arXiv Detail & Related papers (2020-09-01T09:07:25Z) - On Connections between Regularizations for Improving DNN Robustness [67.28077776415724]
This paper analyzes regularization terms proposed recently for improving the adversarial robustness of deep neural networks (DNNs)
We study possible connections between several effective methods, including input-gradient regularization, Jacobian regularization, curvature regularization, and a cross-Lipschitz functional.
arXiv Detail & Related papers (2020-07-04T23:43:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.