Provable benefits of score matching
- URL: http://arxiv.org/abs/2306.01993v1
- Date: Sat, 3 Jun 2023 03:42:30 GMT
- Title: Provable benefits of score matching
- Authors: Chirag Pabbaraju, Dhruv Rohatgi, Anish Sevekari, Holden Lee, Ankur
Moitra, Andrej Risteski
- Abstract summary: We give the first example of a natural exponential family of distributions such that score matching loss is computationally efficient to optimize.
We show that designing a zeroth-order or first-order oracle for optimizing the likelihood loss is NP-hard.
Minimizing the score matching loss is both computationally and statistically efficient, with complexity in the ambient dimension.
- Score: 30.317535687908755
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Score matching is an alternative to maximum likelihood (ML) for estimating a
probability distribution parametrized up to a constant of proportionality. By
fitting the ''score'' of the distribution, it sidesteps the need to compute
this constant of proportionality (which is often intractable). While score
matching and variants thereof are popular in practice, precise theoretical
understanding of the benefits and tradeoffs with maximum likelihood -- both
computational and statistical -- are not well understood. In this work, we give
the first example of a natural exponential family of distributions such that
the score matching loss is computationally efficient to optimize, and has a
comparable statistical efficiency to ML, while the ML loss is intractable to
optimize using a gradient-based method. The family consists of exponentials of
polynomials of fixed degree, and our result can be viewed as a continuous
analogue of recent developments in the discrete setting. Precisely, we show:
(1) Designing a zeroth-order or first-order oracle for optimizing the maximum
likelihood loss is NP-hard. (2) Maximum likelihood has a statistical efficiency
polynomial in the ambient dimension and the radius of the parameters of the
family. (3) Minimizing the score matching loss is both computationally and
statistically efficient, with complexity polynomial in the ambient dimension.
Related papers
- Optimal convex $M$-estimation via score matching [6.115859302936817]
We construct a data-driven convex loss function with respect to which empirical risk minimisation yields optimal variance in the downstream estimation of the regression coefficients.
Our semiparametric approach targets the best decreasing approximation of the derivative of the derivative of the log-density of the noise distribution.
arXiv Detail & Related papers (2024-03-25T12:23:19Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - On Computationally Efficient Learning of Exponential Family
Distributions [33.229944519289795]
We focus on the setting where the support as well as the natural parameters are appropriately bounded.
Our method achives the order-optimal sample complexity of $O(sf log(k)/alpha2)$ when tailored for node-wise-sparse random fields.
arXiv Detail & Related papers (2023-09-12T17:25:32Z) - Fit Like You Sample: Sample-Efficient Generalized Score Matching from
Fast Mixing Diffusions [29.488555741982015]
We show a close connection between the mixing time of a broad class of Markov processes with generator $mathcalL$.
We adapt techniques to speed up Markov chains to construct better score-matching losses.
In particular, preconditioning' the diffusion can be translated to an appropriate preconditioning'' of the score loss.
arXiv Detail & Related papers (2023-06-15T17:58:42Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
Noise-contrastive estimation(NCE) has been proposed by formulating the objective as the logistic loss of the real data and the artificial noise.
In this paper, we study it a direct approach for optimizing the negative log-likelihood of unnormalized models.
arXiv Detail & Related papers (2023-06-13T01:18:16Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Statistical Efficiency of Score Matching: The View from Isoperimetry [96.65637602827942]
We show a tight connection between statistical efficiency of score matching and the isoperimetric properties of the distribution being estimated.
We formalize these results both in the sample regime and in the finite regime.
arXiv Detail & Related papers (2022-10-03T06:09:01Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
It is essential to theoretically guarantee that algorithms provide small objective residual with high probability.
Existing methods for non-smooth convex optimization have complexity bounds with dependence on confidence level.
We propose novel stepsize rules for two methods with gradient clipping.
arXiv Detail & Related papers (2021-06-10T17:54:21Z) - Efficient semidefinite-programming-based inference for binary and
multi-class MRFs [83.09715052229782]
We propose an efficient method for computing the partition function or MAP estimate in a pairwise MRF.
We extend semidefinite relaxations from the typical binary MRF to the full multi-class setting, and develop a compact semidefinite relaxation that can again be solved efficiently using the solver.
arXiv Detail & Related papers (2020-12-04T15:36:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.