GPT-FL: Generative Pre-trained Model-Assisted Federated Learning
- URL: http://arxiv.org/abs/2306.02210v4
- Date: Tue, 18 Jun 2024 01:00:10 GMT
- Title: GPT-FL: Generative Pre-trained Model-Assisted Federated Learning
- Authors: Tuo Zhang, Tiantian Feng, Samiul Alam, Dimitrios Dimitriadis, Sunwoo Lee, Mi Zhang, Shrikanth S. Narayanan, Salman Avestimehr,
- Abstract summary: GPT-FL is a generative pre-trained model-assisted federated learning framework.
It consistently outperforms state-of-the-art FL methods in terms of model test accuracy, communication efficiency, and client sampling efficiency.
- Score: 40.522864349440674
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this work, we propose GPT-FL, a generative pre-trained model-assisted federated learning (FL) framework. At its core, GPT-FL leverages generative pre-trained models to generate diversified synthetic data. These generated data are used to train a downstream model on the server, which is then fine-tuned with private client data under the standard FL framework. We show that GPT-FL consistently outperforms state-of-the-art FL methods in terms of model test accuracy, communication efficiency, and client sampling efficiency. Through comprehensive ablation analysis across various data modalities, we discover that the downstream model generated by synthetic data plays a crucial role in controlling the direction of gradient diversity during FL training, which enhances convergence speed and contributes to the notable accuracy boost observed with GPT-FL. Also, regardless of whether the target data falls within or outside the domain of the pre-trained generative model, GPT-FL consistently achieves significant performance gains, surpassing the results obtained by models trained solely with FL or synthetic data. The code is available at https://github.com/AvestimehrResearchGroup/GPT-FL.
Related papers
- Lightweight Industrial Cohorted Federated Learning for Heterogeneous Assets [0.0]
Federated Learning (FL) is the most widely adopted collaborative learning approach for training decentralized Machine Learning (ML) models.
However, since great data similarity or homogeneity is taken for granted in all FL tasks, FL is still not specifically designed for the industrial setting.
We propose a Lightweight Industrial Cohorted FL (LICFL) algorithm that uses model parameters for cohorting without any additional on-edge (clientlevel) computations and communications.
arXiv Detail & Related papers (2024-07-25T12:48:56Z) - FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
Federated Learning (FL) enables collaborative training of machine learning models on decentralized data.
Data across clients often differs significantly due to class imbalance, feature distribution skew, sample size imbalance, and other phenomena.
We propose a novel Bayesian PFL framework using bi-level optimization to tackle the data heterogeneity challenges.
arXiv Detail & Related papers (2024-05-29T11:28:06Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - FLIGAN: Enhancing Federated Learning with Incomplete Data using GAN [1.5749416770494706]
Federated Learning (FL) provides a privacy-preserving mechanism for distributed training of machine learning models on networked devices.
We propose FLIGAN, a novel approach to address the issue of data incompleteness in FL.
Our methodology adheres to FL's privacy requirements by generating synthetic data in a federated manner without sharing the actual data in the process.
arXiv Detail & Related papers (2024-03-25T16:49:38Z) - FedTGP: Trainable Global Prototypes with Adaptive-Margin-Enhanced
Contrastive Learning for Data and Model Heterogeneity in Federated Learning [18.916282151435727]
Heterogeneous Federated Learning (HtFL) has attracted attention due to its ability to support heterogeneous models and data.
We introduce a novel HtFL approach called FedTGP, which leverages our Adaptive-margin-enhanced Contrastive Learning (ACL) to learn Trainable Global Prototypes (TGP) on the server.
arXiv Detail & Related papers (2024-01-06T14:43:47Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - PFL-GAN: When Client Heterogeneity Meets Generative Models in
Personalized Federated Learning [55.930403371398114]
We propose a novel generative adversarial network (GAN) sharing and aggregation strategy for personalized learning (PFL)
PFL-GAN addresses the client heterogeneity in different scenarios. More specially, we first learn the similarity among clients and then develop an weighted collaborative data aggregation.
The empirical results through the rigorous experimentation on several well-known datasets demonstrate the effectiveness of PFL-GAN.
arXiv Detail & Related papers (2023-08-23T22:38:35Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
Federated Learning (FL) is an emerging distributed learning paradigm under privacy constraint.
We propose a data-free knowledge distillation method to fine-tune the global model in the server (FedFTG)
Our FedFTG significantly outperforms the state-of-the-art (SOTA) FL algorithms and can serve as a strong plugin for enhancing FedAvg, FedProx, FedDyn, and SCAFFOLD.
arXiv Detail & Related papers (2022-03-17T11:18:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.