Roulette-Wheel Selection-Based PSO Algorithm for Solving the Vehicle
Routing Problem with Time Windows
- URL: http://arxiv.org/abs/2306.02308v1
- Date: Sun, 4 Jun 2023 09:18:02 GMT
- Title: Roulette-Wheel Selection-Based PSO Algorithm for Solving the Vehicle
Routing Problem with Time Windows
- Authors: Gautam Siddharth Kashyap, Alexander E. I. Brownlee, Orchid Chetia
Phukan, Karan Malik, Samar Wazir
- Abstract summary: This paper presents a novel form of the PSO methodology that uses the Roulette Wheel Method (RWPSO)
Experiments using the Solomon VRPTW benchmark datasets on the RWPSO demonstrate that RWPSO is competitive with other state-of-the-art algorithms from the literature.
- Score: 58.891409372784516
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The well-known Vehicle Routing Problem with Time Windows (VRPTW) aims to
reduce the cost of moving goods between several destinations while
accommodating constraints like set time windows for certain locations and
vehicle capacity. Applications of the VRPTW problem in the real world include
Supply Chain Management (SCM) and logistic dispatching, both of which are
crucial to the economy and are expanding quickly as work habits change.
Therefore, to solve the VRPTW problem, metaheuristic algorithms i.e. Particle
Swarm Optimization (PSO) have been found to work effectively, however, they can
experience premature convergence. To lower the risk of PSO's premature
convergence, the authors have solved VRPTW in this paper utilising a novel form
of the PSO methodology that uses the Roulette Wheel Method (RWPSO). Computing
experiments using the Solomon VRPTW benchmark datasets on the RWPSO demonstrate
that RWPSO is competitive with other state-of-the-art algorithms from the
literature. Also, comparisons with two cutting-edge algorithms from the
literature show how competitive the suggested algorithm is.
Related papers
- Hybrid Genetic Search for Dynamic Vehicle Routing with Time Windows [0.0]
We adapt the Hybrid Genetic Search (HGS) algorithm, a successful solution for VRPTW, to the dynamic variant.
Our approach modifies these components for DVRPTW, attempting to balance solution quality and constraints on future customer arrivals.
arXiv Detail & Related papers (2023-07-21T11:16:49Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
We propose a novel Reinforcement Learning (RL) approach to design generic Congestion Control (CC) algorithms.
Our solution, MARLIN, uses the Soft Actor-Critic algorithm to maximize both entropy and return.
We trained MARLIN on a real network with varying background traffic patterns to overcome the sim-to-real mismatch.
arXiv Detail & Related papers (2023-02-02T18:27:20Z) - Learning to Solve Soft-Constrained Vehicle Routing Problems with
Lagrangian Relaxation [0.4014524824655105]
Vehicle Routing Problems (VRPs) in real-world applications often come with various constraints.
We propose a Reinforcement Learning based method to solve soft-constrained VRPs.
We apply the method on three common types of VRPs, the Travelling Salesman Problem with Time Windows (TSPTW), the Capacitated VRP (CVRP) and the Capacitated VRP with Time Windows (CVRPTW)
arXiv Detail & Related papers (2022-07-20T12:51:06Z) - Online V2X Scheduling for Raw-Level Cooperative Perception [21.099819062731463]
Cooperative perception of connected vehicles comes to the rescue when the field of view restricts stand-alone intelligence.
We present a model of raw-level cooperative perception and formulate the energy minimization problem of sensor sharing scheduling.
We propose an online learning-based algorithm with logarithmic performance loss, achieving a decent trade-off between exploration and exploitation.
arXiv Detail & Related papers (2022-02-12T15:16:45Z) - AsySQN: Faster Vertical Federated Learning Algorithms with Better
Computation Resource Utilization [159.75564904944707]
We propose an asynchronous quasi-Newton (AsySQN) framework for vertical federated learning (VFL)
The proposed algorithms make descent steps scaled by approximate without calculating the inverse Hessian matrix explicitly.
We show that the adopted asynchronous computation can make better use of the computation resource.
arXiv Detail & Related papers (2021-09-26T07:56:10Z) - Deep Policy Dynamic Programming for Vehicle Routing Problems [89.96386273895985]
We propose Deep Policy Dynamic Programming (D PDP) to combine the strengths of learned neurals with those of dynamic programming algorithms.
D PDP prioritizes and restricts the DP state space using a policy derived from a deep neural network, which is trained to predict edges from example solutions.
We evaluate our framework on the travelling salesman problem (TSP) and the vehicle routing problem (VRP) and show that the neural policy improves the performance of (restricted) DP algorithms.
arXiv Detail & Related papers (2021-02-23T15:33:57Z) - Dynamic RAN Slicing for Service-Oriented Vehicular Networks via
Constrained Learning [40.5603189901241]
We investigate a radio access network (RAN) slicing problem for Internet of vehicles (IoV) services with different quality of service (QoS) requirements.
A dynamic RAN slicing framework is presented to dynamically allocate radio spectrum and computing resource.
We show that the RAWS effectively reduces the system cost while satisfying requirements with a high probability, as compared with benchmarks.
arXiv Detail & Related papers (2020-12-03T15:08:38Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z) - Multi-Vehicle Routing Problems with Soft Time Windows: A Multi-Agent
Reinforcement Learning Approach [9.717648122961483]
Multi-vehicle routing problem with soft time windows (MVRPSTW) is an indispensable constituent in urban logistics systems.
Traditional methods incur the dilemma between computational efficiency and solution quality.
We propose a novel reinforcement learning algorithm called the Multi-Agent Attention Model that can solve routing problem instantly benefit from lengthy offline training.
arXiv Detail & Related papers (2020-02-13T14:26:27Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
This paper investigates the problem of vehicle-cell association in millimeter wave (mmWave) communication networks.
We first formulate the user state (VU) problem as a discrete non-vehicle association optimization problem.
The proposed solution achieves up to 15% gains in terms sum of user complexity and 20% reduction in VUE compared to several baseline designs.
arXiv Detail & Related papers (2020-01-22T08:51:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.