MotionTrack: Learning Motion Predictor for Multiple Object Tracking
- URL: http://arxiv.org/abs/2306.02585v2
- Date: Mon, 11 Mar 2024 14:36:22 GMT
- Title: MotionTrack: Learning Motion Predictor for Multiple Object Tracking
- Authors: Changcheng Xiao, Qiong Cao, Yujie Zhong, Long Lan, Xiang Zhang,
Zhigang Luo, Dacheng Tao
- Abstract summary: We introduce a novel motion-based tracker, MotionTrack, centered around a learnable motion predictor.
Our experimental results demonstrate that MotionTrack yields state-of-the-art performance on datasets such as Dancetrack and SportsMOT.
- Score: 68.68339102749358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Significant progress has been achieved in multi-object tracking (MOT) through
the evolution of detection and re-identification (ReID) techniques. Despite
these advancements, accurately tracking objects in scenarios with homogeneous
appearance and heterogeneous motion remains a challenge. This challenge arises
from two main factors: the insufficient discriminability of ReID features and
the predominant utilization of linear motion models in MOT. In this context, we
introduce a novel motion-based tracker, MotionTrack, centered around a
learnable motion predictor that relies solely on object trajectory information.
This predictor comprehensively integrates two levels of granularity in motion
features to enhance the modeling of temporal dynamics and facilitate precise
future motion prediction for individual objects. Specifically, the proposed
approach adopts a self-attention mechanism to capture token-level information
and a Dynamic MLP layer to model channel-level features. MotionTrack is a
simple, online tracking approach. Our experimental results demonstrate that
MotionTrack yields state-of-the-art performance on datasets such as Dancetrack
and SportsMOT, characterized by highly complex object motion.
Related papers
- MambaTrack: A Simple Baseline for Multiple Object Tracking with State Space Model [18.607106274732885]
We introduce a Mamba-based motion model named Mamba moTion Predictor (MTP)
MTP takes the spatial-temporal location dynamics of objects as input, captures the motion pattern using a bi-Mamba encoding layer, and predicts the next motion.
Our proposed tracker, MambaTrack, demonstrates advanced performance on benchmarks such as Dancetrack and SportsMOT.
arXiv Detail & Related papers (2024-08-17T11:58:47Z) - ETTrack: Enhanced Temporal Motion Predictor for Multi-Object Tracking [4.250337979548885]
We propose a motion-based MOT approach with an enhanced temporal motion predictor, ETTrack.
Specifically, the motion predictor integrates a transformer model and a Temporal Convolutional Network (TCN) to capture short-term and long-term motion patterns.
We show ETTrack achieves a competitive performance compared with state-of-the-art trackers on DanceTrack and SportsMOT.
arXiv Detail & Related papers (2024-05-24T17:51:33Z) - DiffMOT: A Real-time Diffusion-based Multiple Object Tracker with Non-linear Prediction [15.542306419065945]
We propose a real-time diffusion-based MOT approach named DiffMOT to tackle the complex non-linear motion.
As a MOT tracker, the DiffMOT is real-time at 22.7FPS, and also outperforms the state-of-the-art on DanceTrack and SportsMOT datasets.
arXiv Detail & Related papers (2024-03-04T14:21:51Z) - SpikeMOT: Event-based Multi-Object Tracking with Sparse Motion Features [52.213656737672935]
SpikeMOT is an event-based multi-object tracker.
SpikeMOT uses spiking neural networks to extract sparsetemporal features from event streams associated with objects.
arXiv Detail & Related papers (2023-09-29T05:13:43Z) - Delving into Motion-Aware Matching for Monocular 3D Object Tracking [81.68608983602581]
We find that the motion cue of objects along different time frames is critical in 3D multi-object tracking.
We propose MoMA-M3T, a framework that mainly consists of three motion-aware components.
We conduct extensive experiments on the nuScenes and KITTI datasets to demonstrate our MoMA-M3T achieves competitive performance against state-of-the-art methods.
arXiv Detail & Related papers (2023-08-22T17:53:58Z) - An Effective Motion-Centric Paradigm for 3D Single Object Tracking in
Point Clouds [50.19288542498838]
3D single object tracking in LiDAR point clouds (LiDAR SOT) plays a crucial role in autonomous driving.
Current approaches all follow the Siamese paradigm based on appearance matching.
We introduce a motion-centric paradigm to handle LiDAR SOT from a new perspective.
arXiv Detail & Related papers (2023-03-21T17:28:44Z) - MotionTrack: Learning Robust Short-term and Long-term Motions for
Multi-Object Tracking [56.92165669843006]
We propose MotionTrack, which learns robust short-term and long-term motions in a unified framework to associate trajectories from a short to long range.
For dense crowds, we design a novel Interaction Module to learn interaction-aware motions from short-term trajectories, which can estimate the complex movement of each target.
For extreme occlusions, we build a novel Refind Module to learn reliable long-term motions from the target's history trajectory, which can link the interrupted trajectory with its corresponding detection.
arXiv Detail & Related papers (2023-03-18T12:38:33Z) - Observation-Centric SORT: Rethinking SORT for Robust Multi-Object
Tracking [32.32109475782992]
We show that a simple motion model can obtain state-of-the-art tracking performance without other cues like appearance.
We thus name the proposed method as Observation-Centric SORT, OC-SORT for short.
arXiv Detail & Related papers (2022-03-27T17:57:08Z) - AMP: Adversarial Motion Priors for Stylized Physics-Based Character
Control [145.61135774698002]
We propose a fully automated approach to selecting motion for a character to track in a given scenario.
High-level task objectives that the character should perform can be specified by relatively simple reward functions.
Low-level style of the character's behaviors can be specified by a dataset of unstructured motion clips.
Our system produces high-quality motions comparable to those achieved by state-of-the-art tracking-based techniques.
arXiv Detail & Related papers (2021-04-05T22:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.