STAR Loss: Reducing Semantic Ambiguity in Facial Landmark Detection
- URL: http://arxiv.org/abs/2306.02763v1
- Date: Mon, 5 Jun 2023 10:33:25 GMT
- Title: STAR Loss: Reducing Semantic Ambiguity in Facial Landmark Detection
- Authors: Zhenglin Zhou and Huaxia Li and Hong Liu and Nanyang Wang and Gang Yu
and Rongrong Ji
- Abstract summary: We propose a Self-adapTive Ambiguity Reduction (STAR) loss by exploiting the properties of semantic ambiguity.
We find that semantic ambiguity results in the anisotropic predicted distribution, which inspires us to use predicted distribution to represent semantic ambiguity.
We also propose two kinds of eigenvalue restriction methods that could avoid both distribution's abnormal change and the model's premature convergence.
- Score: 80.04000067312428
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, deep learning-based facial landmark detection has achieved
significant improvement. However, the semantic ambiguity problem degrades
detection performance. Specifically, the semantic ambiguity causes inconsistent
annotation and negatively affects the model's convergence, leading to worse
accuracy and instability prediction. To solve this problem, we propose a
Self-adapTive Ambiguity Reduction (STAR) loss by exploiting the properties of
semantic ambiguity. We find that semantic ambiguity results in the anisotropic
predicted distribution, which inspires us to use predicted distribution to
represent semantic ambiguity. Based on this, we design the STAR loss that
measures the anisotropism of the predicted distribution. Compared with the
standard regression loss, STAR loss is encouraged to be small when the
predicted distribution is anisotropic and thus adaptively mitigates the impact
of semantic ambiguity. Moreover, we propose two kinds of eigenvalue restriction
methods that could avoid both distribution's abnormal change and the model's
premature convergence. Finally, the comprehensive experiments demonstrate that
STAR loss outperforms the state-of-the-art methods on three benchmarks, i.e.,
COFW, 300W, and WFLW, with negligible computation overhead. Code is at
https://github.com/ZhenglinZhou/STAR.
Related papers
- Distributional Shift-Aware Off-Policy Interval Estimation: A Unified
Error Quantification Framework [8.572441599469597]
We study high-confidence off-policy evaluation in the context of infinite-horizon Markov decision processes.
The objective is to establish a confidence interval (CI) for the target policy value using only offline data pre-collected from unknown behavior policies.
We show that our algorithm is sample-efficient, error-robust, and provably convergent even in non-linear function approximation settings.
arXiv Detail & Related papers (2023-09-23T06:35:44Z) - Towards the Semantic Weak Generalization Problem in Generative Zero-Shot
Learning: Ante-hoc and Post-hoc [89.68803484284408]
We present a simple and effective strategy lowering the previously unexplored factors that limit the performance ceiling of generative Zero-Shot Learning (ZSL)
We begin by formally defining semantic generalization, then look into approaches for reducing the semantic weak generalization problem.
In the ante-hoc phase, we augment the generator's semantic input, as well as relax the fitting target of the generator.
arXiv Detail & Related papers (2022-04-24T13:54:42Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
We introduce MRP-Net that constitutes a common deep network backbone with two output heads subscribing to two diverse configurations.
We derive suitable measures to quantify prediction uncertainty at both pose and joint level.
We present a comprehensive evaluation of the proposed approach and demonstrate state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2022-03-29T07:14:58Z) - The Devil is in the Margin: Margin-based Label Smoothing for Network
Calibration [21.63888208442176]
In spite of the dominant performances of deep neural networks, recent works have shown that they are poorly calibrated.
We provide a unifying constrained-optimization perspective of current state-of-the-art calibration losses.
We propose a simple and flexible generalization based on inequality constraints, which imposes a controllable margin on logit distances.
arXiv Detail & Related papers (2021-11-30T14:21:47Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
Variational Autoencoder (VAE) approximates the posterior of latent variables based on amortized variational inference.
We propose an alternative model, DU-VAE, for learning a more Diverse and less Uncertain latent space.
arXiv Detail & Related papers (2021-10-24T07:58:13Z) - On the (Un-)Avoidability of Adversarial Examples [4.822598110892847]
adversarial examples in deep learning models have caused substantial concern over their reliability.
We provide a framework for determining whether a model's label change under small perturbation is justified.
We prove that our adaptive data-augmentation maintains consistency of 1-nearest neighbor classification under deterministic labels.
arXiv Detail & Related papers (2021-06-24T21:35:25Z) - Dive into Ambiguity: Latent Distribution Mining and Pairwise Uncertainty
Estimation for Facial Expression Recognition [59.52434325897716]
We propose a solution, named DMUE, to address the problem of annotation ambiguity from two perspectives.
For the former, an auxiliary multi-branch learning framework is introduced to better mine and describe the latent distribution in the label space.
For the latter, the pairwise relationship of semantic feature between instances are fully exploited to estimate the ambiguity extent in the instance space.
arXiv Detail & Related papers (2021-04-01T03:21:57Z) - A Novel Regression Loss for Non-Parametric Uncertainty Optimization [7.766663822644739]
Quantification of uncertainty is one of the most promising approaches to establish safe machine learning.
One of the most commonly used approaches so far is Monte Carlo dropout, which is computationally cheap and easy to apply in practice.
We propose a new objective, referred to as second-moment loss ( UCI), to address this issue.
arXiv Detail & Related papers (2021-01-07T19:12:06Z) - Second-Moment Loss: A Novel Regression Objective for Improved
Uncertainties [7.766663822644739]
Quantification of uncertainty is one of the most promising approaches to establish safe machine learning.
One of the most commonly used approaches so far is Monte Carlo dropout, which is computationally cheap and easy to apply in practice.
We propose a new objective, referred to as second-moment loss ( UCI), to address this issue.
arXiv Detail & Related papers (2020-12-23T14:17:33Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
We estimate and exploit the credibility of the assigned pseudo-label of each sample to alleviate the influence of noisy labels.
Our uncertainty-guided optimization brings significant improvement and achieves the state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2020-12-16T04:09:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.