PolyVoice: Language Models for Speech to Speech Translation
- URL: http://arxiv.org/abs/2306.02982v2
- Date: Tue, 13 Jun 2023 15:15:17 GMT
- Title: PolyVoice: Language Models for Speech to Speech Translation
- Authors: Qianqian Dong, Zhiying Huang, Qiao Tian, Chen Xu, Tom Ko, Yunlong
Zhao, Siyuan Feng, Tang Li, Kexin Wang, Xuxin Cheng, Fengpeng Yue, Ye Bai, Xi
Chen, Lu Lu, Zejun Ma, Yuping Wang, Mingxuan Wang, Yuxuan Wang
- Abstract summary: PolyVoice is a language model-based framework for speech-to-speech translation (S2ST)
We use discretized speech units, which are generated in a fully unsupervised way.
For the speech synthesis part, we adopt the existing VALL-E X approach and build a unit-based audio language model.
- Score: 50.31000706309143
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose PolyVoice, a language model-based framework for speech-to-speech
translation (S2ST) system. Our framework consists of two language models: a
translation language model and a speech synthesis language model. We use
discretized speech units, which are generated in a fully unsupervised way, and
thus our framework can be used for unwritten languages. For the speech
synthesis part, we adopt the existing VALL-E X approach and build a unit-based
audio language model. This grants our framework the ability to preserve the
voice characteristics and the speaking style of the original speech. We examine
our system on Chinese $\rightarrow$ English and English $\rightarrow$ Spanish
pairs. Experimental results show that our system can generate speech with high
translation quality and audio quality. Speech samples are available at
https://speechtranslation.github.io/polyvoice.
Related papers
- FunAudioLLM: Voice Understanding and Generation Foundation Models for Natural Interaction Between Humans and LLMs [63.8261207950923]
FunAudioLLM is a model family designed to enhance natural voice interactions between humans and large language models (LLMs)
At its core are two innovative models: SenseVoice, which handles multilingual speech recognition, emotion recognition, and audio event detection; and CosyVoice, which facilitates natural speech generation with control over multiple languages, timbre, speaking style, and speaker identity.
The models related to SenseVoice and CosyVoice have been open-sourced on Modelscope and Huggingface, along with the corresponding training, inference, and fine-tuning codes released on GitHub.
arXiv Detail & Related papers (2024-07-04T16:49:02Z) - Textless Unit-to-Unit training for Many-to-Many Multilingual Speech-to-Speech Translation [65.13824257448564]
This paper proposes a textless training method for many-to-many multilingual speech-to-speech translation.
By treating the speech units as pseudo-text, we can focus on the linguistic content of the speech.
We demonstrate that the proposed UTUT model can be effectively utilized not only for Speech-to-Speech Translation (S2ST) but also for multilingual Text-to-Speech Synthesis (T2S) and Text-to-Speech Translation (T2ST)
arXiv Detail & Related papers (2023-08-03T15:47:04Z) - AudioPaLM: A Large Language Model That Can Speak and Listen [79.44757696533709]
We introduce AudioPaLM, a large language model for speech understanding and generation.
AudioPaLM fuses text-based and speech-based language models.
It can process and generate text and speech with applications including speech recognition and speech-to-speech translation.
arXiv Detail & Related papers (2023-06-22T14:37:54Z) - MParrotTTS: Multilingual Multi-speaker Text to Speech Synthesis in Low
Resource Setting [16.37243395952266]
MParrotTTS is a unified multilingual, multi-speaker text-to-speech (TTS) synthesis model.
It adapts to a new language with minimal supervised data and generalizes to languages not seen while training the self-supervised backbone.
We present extensive results on six languages in terms of speech naturalness and speaker similarity in parallel and cross-lingual synthesis.
arXiv Detail & Related papers (2023-05-19T13:43:36Z) - Speak Foreign Languages with Your Own Voice: Cross-Lingual Neural Codec
Language Modeling [92.55131711064935]
We propose a cross-lingual neural language model, VALL-E X, for cross-lingual speech synthesis.
VALL-E X inherits strong in-context learning capabilities and can be applied for zero-shot cross-lingual text-to-speech synthesis and zero-shot speech-to-speech translation tasks.
It can generate high-quality speech in the target language via just one speech utterance in the source language as a prompt while preserving the unseen speaker's voice, emotion, and acoustic environment.
arXiv Detail & Related papers (2023-03-07T14:31:55Z) - ERNIE-SAT: Speech and Text Joint Pretraining for Cross-Lingual
Multi-Speaker Text-to-Speech [58.93395189153713]
We extend the pretraining method for cross-lingual multi-speaker speech synthesis tasks.
We propose a speech-text joint pretraining framework, where we randomly mask the spectrogram and the phonemes.
Our model shows great improvements over speaker-embedding-based multi-speaker TTS methods.
arXiv Detail & Related papers (2022-11-07T13:35:16Z) - LibriS2S: A German-English Speech-to-Speech Translation Corpus [12.376309678270275]
We create the first publicly available speech-to-speech training corpus between German and English.
This allows the creation of a new text-to-speech and speech-to-speech translation model.
We propose Text-to-Speech models based on the example of the recently proposed FastSpeech 2 model.
arXiv Detail & Related papers (2022-04-22T09:33:31Z) - Cross-lingual Multispeaker Text-to-Speech under Limited-Data Scenario [10.779568857641928]
This paper presents an extension on Tacotron2 to achieve bilingual multispeaker speech synthesis.
We achieve cross-lingual synthesis, including code-switching cases, between English and Mandarin for monolingual speakers.
arXiv Detail & Related papers (2020-05-21T03:03:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.